The incorporation of intramolecular hydrogen bonds (IMHB) into small molecules constitutes an interesting optimization strategy to afford potential drug candidates with enhanced solubility as well as permeability and consequently improved bioavailability (if metabolic stability is high). Common methods to assess IMHB rely on spectroscopic or diffraction techniques, which, however, have limited throughput when screening for hit compounds in early phases of drug discovery. Inspired by literature findings using supercritical fluid chromatography (SFC) as an indirect method for IMHB identification in a screening context, we aimed at developing a secondary chromatographic methodology taking advantage of commonly used HPLC-MS instrumentation.
View Article and Find Full Text PDFHepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary -glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation.
View Article and Find Full Text PDFReliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 M ( = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%).
View Article and Find Full Text PDF