Publications by authors named "Alessandra Perfetti"

Article Synopsis
  • CRISPR/Cas9 is a cutting-edge gene-editing technology showing potential for treating incurable genetic diseases like myotonic dystrophy.
  • Recent experiments in models of myotonic dystrophy type 1 (DM1) have successfully targeted and removed harmful CTG-repeat expansions, leading to improvements in disease symptoms.
  • The researchers developed a strategy using specific promoters to control gene editing in selected cells, ensuring effective gene therapy while minimizing unintended changes to other parts of the genome.
View Article and Find Full Text PDF

Circular RNAs (circRNAs) constitute a recently re-discovered class of non-coding RNAs functioning as sponges for miRNAs and proteins, affecting RNA splicing and regulating transcription. CircRNAs are generated by "back-splicing", which is the linking covalently of 3'- and 5'-ends of exons. Thus, circRNA levels might be deregulated in conditions associated with altered RNA-splicing.

View Article and Find Full Text PDF
Article Synopsis
  • Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the DMPK gene, leading to toxic RNA effects that disrupt muscle function due to altered microRNA (miRNA) behavior.
  • Analysis of muscle biopsies from DM1 patients revealed that specific miRNAs' expression and localization were impaired, affecting important mRNA targets related to muscle metabolism, signaling, and contraction.
  • The study identified significant interactions between miR-29c and ASB2, linking decreased miR-29c and increased ASB2 levels to DM1 pathology, with further validation showing that gene editing could restore normal levels, demonstrating a direct influence of the mutated DNA sequence on miRNA and mRNA expression
View Article and Find Full Text PDF

Background: Long noncoding RNAs (lncRNAs) are non-protein coding transcripts regulating a variety of physiological and pathological functions. However, their implication in heart failure is still largely unknown. The aim of this study is to identify and characterize lncRNAs deregulated in patients affected by ischemic heart failure.

View Article and Find Full Text PDF

The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) lacks non-invasive and easy to measure biomarkers, still largely relying on semi-quantitative tests for diagnostic and prognostic purposes. Muscle biopsies provide valuable data, but their use is limited by their invasiveness. microRNA (miRNAs) are small non-coding RNAs regulating gene expression that are also present in biological fluids and may serve as diseases biomarkers.

View Article and Find Full Text PDF

Aims: Peripheral artery disease is caused by the restriction or occlusion of arteries supplying the leg. Better understanding of the molecular mechanisms underpinning tissue response to ischemia is urgently needed to improve therapeutic options. The aim of this study is to investigate hypoxia-induced miR-210 regulation and its role in a mouse model of hindlimb ischemia.

View Article and Find Full Text PDF

Myotonic Dystrophy Type-2 (DM2) is an autosomal dominant disease caused by the expansion of a CCTG tetraplet repeat. It is a multisystemic disorder, affecting skeletal muscles, the heart, the eye, the central nervous system and the endocrine system. Since microRNA (miRNA) expression is disrupted in Myotonic Dystrophy Type-1 and many other myopathies, miRNAs deregulation was studied in skeletal muscle biopsies of 13 DM2 patients and 13 controls.

View Article and Find Full Text PDF

A 64-year-old man with idiopathic CD4(+) lymphocytopenia developed cognitive impairment and gait ataxia with isolated obstructive hydrocephalus, which was fatal. Cerebrospinal fluid showed mild pleocytosis, but the etiology was not revealed by extensive analysis. At autopsy, inflammatory cells, CD8(+) lymphocytes and abundant macrophages but not CD4(+) lymphocytes were infiltrating the meninges at the base of the brain.

View Article and Find Full Text PDF

Dysregulated epidermal growth factor receptor (EGFR) signaling is involved in gastric cancer (GC) cell growth. However, the mechanism that sustains EGFR signaling in GC remains unknown. Since protease-activated receptor-2 (PAR-2), a G protein-coupled receptor, has been shown to trans-activate EGFR in several cell types, we examined the role of PAR-2 in GC.

View Article and Find Full Text PDF