Publications by authors named "Alessandra Peirano"

At least three acetyl xylan esterases (AXE I, II and III) are secreted by Penicillium purpurogenum. This publication describes more detailed work on AXE I and its gene. AXE I binds cellulose but not xylan; it is glycosylated and inactivated by phenylmethylsulphonyl fluoride, showing that it is a serine esterase.

View Article and Find Full Text PDF

The expression of the acetyl xylan esterase II (axeII) gene from Penicillium purpurogenum is repressed by glucose and induced by xylan, as well as to a small degree by xylose and xylitol. This gene is expressed at neutral pH, but not under alkaline or acidic conditions, in agreement with previous findings for other xylanolytic genes of this organism. This is the first report showing pH regulation of an axe gene.

View Article and Find Full Text PDF

An alpha-L-arabinofuranosidase gene (abf1) from Penicillium purpurogenum was identified and sequenced. abf1 has an open reading frame of 1518 bp, does not contain introns and codes for a protein of 506 amino acids. The deduced mature protein has a molecular mass of 49.

View Article and Find Full Text PDF

A number of xylanolytic microorganisms secrete to the medium several molecular forms of endoxylanases. The physiological function of these isoforms is not clear; one possibility is that they are produced under different growth conditions. To study this problem, we have used two endoxylanases (XynA and XynB) produced by the fungus Penicillium purpurogenum.

View Article and Find Full Text PDF

Saccharomyces cerevisiae was transformed with a genomic library from Penicillium purpurogenum, and an endoxylanase-producing yeast clone (named 44A) that grows on xylose or xylan as sole carbon source was isolated. This yeast synthesizes xynA mRNA and secretes endoxylanase A to culture media when grown on xylan or xylose, but not glucose. Analysis by pulse-field gel electrophoresis and sequencing indicates that xynA, including its eight introns, has been inserted into the yeast genome.

View Article and Find Full Text PDF