Metformin, a first-line drug for type-2 diabetes, displays pleiotropic effects on inflammation, aging, and cancer. Obesity triggers a low-grade chronic inflammation leading to insulin resistance, characterized by increased pro-inflammatory cytokines produced by adipocytes and infiltrated immune cells, which contributes to metabolic syndrome. We investigated metformin's differentiation and immunoregulatory properties of human umbilical cord-mesenchymal stem cells (UC-MSC), as cellular basis of its beneficial role in metabolic dysfunctions.
View Article and Find Full Text PDFBackground: Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings.
Methods: We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model.
The antidiabetic biguanide metformin exerts antiproliferative effects in different solid tumors. However, during preclinical studies, metformin concentrations required to induce cell growth arrest were invariably within the mM range, thus difficult to translate in a clinical setting. Consequently, the search for more potent metformin derivatives is a current goal for new drug development.
View Article and Find Full Text PDFGlioblastoma (GB) is the most lethal, aggressive, and diffuse brain tumor. The main challenge for successful treatment is targeting the cancer stem cell (CSC) subpopulation responsible for tumor origin, progression, and recurrence. Chloride Intracellular Channel 1 (CLIC1), highly expressed in CSCs, is constitutively present in the plasma membrane where it is associated with chloride ion permeability.
View Article and Find Full Text PDFPituitary adenomas are among the more frequent intracranial tumors usually treated with both surgical and pharmacological-based on somatostatin and dopamine agonists-approaches. Although mostly benign tumors, the occurrence of invasive behaviors is often detected resulting in poorer prognosis. The use of primary cultures from human pituitary adenomas represented a significant advancement in the knowledge of the mechanisms of their development and in the definition of the determinants of their pharmacological sensitivity.
View Article and Find Full Text PDFMetformin is an antidiabetic drug which possesses antiproliferative activity in cancer cells when administered at high doses, due to its unfavorable pharmacokinetics. The aim of this work was to develop a pharmacological tool for the release of metformin in proximity of the tumor, allowing high local concentrations, and to demonstrate the in vivo antitumor efficacy after a prolonged metformin exposition. A 1.
View Article and Find Full Text PDFCancer stem cell (CSC) self-renewing and drug resistance cause treatment failure and tumor recurrence. Osteosarcoma is an aggressive bone tumor characterized by biological and molecular heterogeneity, possibly dependent on CSCs. CSC identification in osteosarcoma and their efficient targeting are still open questions.
View Article and Find Full Text PDFGlioblastoma (GBM), the most common primary brain tumor in adults, is an aggressive, fast-growing and highly vascularized tumor, characterized by extensive invasiveness and local recurrence. In GBM and other malignancies, cancer stem cells (CSCs) are believed to drive invasive tumor growth and recurrence, being responsible for radio- and chemo-therapy resistance. Mesenchymal stem cells (MSCs) are multipotent progenitors that exhibit tropism for tumor microenvironment mediated by cytokines, chemokines and growth factors.
View Article and Find Full Text PDFBackground: Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge.
View Article and Find Full Text PDFPrion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM).
View Article and Find Full Text PDFThe presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model.
View Article and Find Full Text PDFCancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity.
View Article and Find Full Text PDFNotwithstanding current multimodal treatment, including surgery, radiotherapy and chemotherapy with temozolomide (TMZ), median survival of glioblastoma (GBM) patients is about 14 months, due to the rapid emergence of cell clones resistant to treatment. Therefore, understanding the mechanisms underlying chemoresistance is mandatory to improve treatments' outcome. We generated TMZ resistant cells (TMZ-R) from a GBM cell line and from cancer stem cell-enriched cultures isolated from human GBMs.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is one of the deadliest and most heterogeneous tumors, highly refractory to multimodal therapeutic approach, including surgery, chemo- and radiotherapy. Preclinical and clinical studies exploring the efficacy of drugs targeting tyrosine kinases, angiogenesis and histone deacetylases, did not fulfil the expected clinical benefits. Thus, novel molecular targets should be identified from a definite knowledge of the unique biology and most relevant transduction pathways of MPM cells.
View Article and Find Full Text PDFBackground: Cancer stem cells (CSCs) are considered the cell subpopulation responsible for breast cancer (BC) initiation, growth, and relapse. CSCs are identified as self-renewing and tumor-initiating cells, conferring resistance to chemo- and radio-therapy to several neoplasias. Nowadays, th (about 10mM)e pharmacological targeting of CSCs is considered an ineludible therapeutic goal.
View Article and Find Full Text PDFEpidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells.
View Article and Find Full Text PDFAdiponectin (Acrp30) is an adipocyte-secreted hormone with pleiotropic metabolic effects, whose reduced levels were related to development and progression of several malignancies. We looked at the presence of Acrp30 receptors in human glioblastomas (GBM), hypothesizing a role for Acrp30 also in this untreatable cancer. Here we demonstrate that human GBM express Acrp30 receptors (AdipoR1 and AdipoR2), which are often co-expressed in GBM samples (70% of the analyzed tumors).
View Article and Find Full Text PDFHepatocyte growth factor, produced by stromal and follicular dendritic cells, and present at high concentrations in the sera of patients with chronic lymphocytic leukemia, prolongs the survival of leukemic B cells by interacting with their receptor, c-MET. It is, however, unknown whether hepatocyte growth factor influences microenvironmental cells, such as nurse-like cells, which deliver survival signals to the leukemic clone. We evaluated the expression of c-MET on nurse-like cells and monocytes from patients with chronic lymphocytic leukemia and searched for phenotypic/functional features supposed to be influenced by the hepatocyte growth factor/c-MET interaction.
View Article and Find Full Text PDFCancer stem cells (CSCs) or tumor initiating cells (TICs) drive glioblastoma (GBM) development, invasiveness and drug resistance. Distinct molecular pathways might regulate CSC biology as compared to cells in the bulk tumor mass, representing potential therapeutic targets. Chemokine CXCL12 and its receptor CXCR4 control proliferation, invasion and angiogenesis in GBM cell lines and primary cultures, but little is known about their activity in GBM CSCs.
View Article and Find Full Text PDFPeptide receptors involved in pathophysiological processes represent promising therapeutic targets. Neuropeptide somatostatin (SST) is produced by specialized cells in a large number of human organs and tissues. SST primarily acts as inhibitor of endocrine and exocrine secretion via the activation of five G-protein-coupled receptors, named sst1-5, while in central nervous system, SST acts as a neurotransmitter/neuromodulator, regulating locomotory and cognitive functions.
View Article and Find Full Text PDFGlioblastomas are grade IV brain tumors characterized by high aggressiveness and invasiveness, giving patients a poor prognosis. We investigated the effects of the multi-kinase inhibitor sorafenib on six cultures isolated from human glioblastomas and maintained in tumor initiating cells-enriching conditions. These cell subpopulations are thought to be responsible for tumor recurrence and radio- and chemo-resistance, representing the perfect target for glioblastoma therapy.
View Article and Find Full Text PDFCancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive chemotherapy-resistant cancer. Up-regulation of epidermal growth factor receptor (EGFR) plays an important role in MPM development and EGFR-tyrosine kinase inhibitors (TKIs) may represent novel therapeutic options. We tested the effects of the EGFR TKIs gefitinib and erlotinib and TKIs targeted to other growth factors (VEGFR and PDGFR), in comparison to standard antineoplastic agents, in two human MPM cell lines, IST-Mes2 and ZL55.
View Article and Find Full Text PDFBackground: Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies.
View Article and Find Full Text PDF