Publications by authors named "Alessandra Pagano"

Tumor-associated macrophages/microglia (TAMs) are highly plastic and heterogeneous immune cells that can be immune-supportive or tumor-supportive depending of the microenvironment. TAMs are the most abundant immune cells in glioblastoma (GB), and play a key role in immunosuppression. Therefore, TAMs reprogramming toward immune-supportive cells is a promising strategy to overcome immunosuppression.

View Article and Find Full Text PDF

Background: COVID-19 presents with a wide spectrum of clinical and radiological manifestations, including pleural effusion. The prevalence and prognostic impact of pleural effusion are still not entirely clear.

Patients And Methods: This is a retrospective, single-center study including a population of consecutive patients admitted to the University Hospital of Cisanello (Pisa) from March 2020 to January 2021 with a positive SARS-CoV-2 nasopharyngeal swab and SARS-CoV-2-related pneumonia.

View Article and Find Full Text PDF

Resistance to treatments is one of the leading causes of cancer therapy failure. Oxaliplatin is a standard chemotherapy used to treat metastatic colorectal cancer. However, its efficacy is greatly reduced by the development of resistances.

View Article and Find Full Text PDF

Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis.

View Article and Find Full Text PDF

The Microtubule-Associated Protein Tau is expressed in several cancers, including low-grade gliomas and glioblastomas. We have previously shown that Tau is crucial for the 2D motility of several glioblastoma cell lines, including U87-MG cells. Using an RNA interference (shRNA), we tested if Tau contributed to glioblastoma in vivo tumorigenicity and analyzed its function in a 3D model of multicellular spheroids (MCS).

View Article and Find Full Text PDF

To better understand the link between obesity and prostate cancer (PC) aggressiveness, we investigate the role of leptin, an obesity associated adipokine, and its receptor (Ob-R) in PC cells migration. The migration assay (Wound-healing) was used to study the leptin impact on DU-145 and PC3 cells lines. STAT3 activation was performed by Western Blot.

View Article and Find Full Text PDF

Protein disulfide isomerases including PDIA1 are implicated in cancer progression, but underlying mechanisms are unclear. PDIA1 is known to support vascular Nox1 NADPH oxidase expression/activation. Since deregulated reactive oxygen species (ROS) production underlies tumor growth, we proposed that PDIA1 is an upstream regulator of tumor-associated ROS.

View Article and Find Full Text PDF

The pathological significance of Tau (encoded by ) in mechanisms driving cell migration in glioblastoma is unclear. By using an shRNA approach to deplete microtubule-stabilizing Tau in U87 cells, we determined its impact on cytoskeletal coordination during migration. We demonstrated here that the motility of these Tau-knockdown cells (shTau cells) was significantly (36%) lower than that of control cells.

View Article and Find Full Text PDF

The synthesis of twenty-six 4-arylcoumarin analogues of combretastatin A-4 (CA-4) led to the identification of two new compounds (25 and 26) with strong cytotoxic activity. Both compounds had a high cytotoxic effect on a CA-4-resistant colon adenocarcinoma cell line (HT29D4). The compounds affected cell cycle progression characterized by a mitotic block.

View Article and Find Full Text PDF

Lung and colorectal cancer are the principal causes of death in the world. Rutin, an active flavonoid compound, is known for possessing a wide range of biological activities. In this study, we examined the effect of rutin on the viability, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines.

View Article and Find Full Text PDF

The NADPH oxidase proteins catalyse the formation of superoxide anion which act as signalling molecules in physiological and pathological processes. Nox1-dependent NADPH oxidase is expressed in heart, lung, colon, blood vessels and brain. Different strategies involving Nox1 inhibition based on diphenylene iodonium derivatives are currently tested for colorectal cancer therapy.

View Article and Find Full Text PDF

Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox.

View Article and Find Full Text PDF

Invasion of normal brain tissue by tumor cells is a major contributing factor to the recurrence of glioblastoma and its resistance to therapy. Here, we have assessed the efficacy of the microtubule (MT) targeting agent Epothilone B (patupilone) on glioblastoma cell migration, a prerequisite for invasive tumor cell behavior. At non-cytotoxic concentrations, patupilone inhibited glioblastoma cell movement, as shown by transwell cell migration, random motility and spheroid assays.

View Article and Find Full Text PDF

Bcl-2 is an anti-apoptotic molecule preventing oxidative stress damage and cell death. We have previously shown that Bcl-2 is able to prevent hyperoxia-induced cell death when overexpressed in a murine fibrosarcoma cell line L929. We hypothesized that its specific overexpression in pulmonary epithelial type II cells could prevent hyperoxia-induced lung injury by protecting the epithelial side of the alveolo-capillary barrier.

View Article and Find Full Text PDF

Rationale: Hyperoxia-induced acute lung injury has been used for many years as a model of oxidative stress mimicking clinical acute lung injury and the acute respiratory distress syndrome. Excess quantities of reactive oxygen species (ROS) are responsible for oxidative stress-induced lung injury. ROS are produced by mitochondrial chain transport, but also by NADPH oxidase (NOX) family members.

View Article and Find Full Text PDF

The motile behavior of endothelial cells is a crucial event for neoangiogenesis. We previously showed that noncytotoxic concentrations of vinflunine inhibit capillary-like tube formation on Matrigel and endothelial cell migration with a concomitant increase in interphase microtubule dynamic instability. In this article, we further investigated the effects of vinflunine on migration and cytoskeleton interaction dynamics in HMEC-1 endothelial cells.

View Article and Find Full Text PDF

Oxygen-based therapies expose lung to elevated levels of ROS and induce lung cell damage and inflammation. Injured cells are replaced through increased proliferation and differentiation of epithelial cells and fibroblasts. Failure to modulate these processes leads to excessive cell proliferation, collagen deposition, fibrosis, and chronic lung disease.

View Article and Find Full Text PDF

Bcl-2 is an antiapoptotic molecule that prevents oxidative stress damage and cell death. We investigated the possible protective mechanisms mediated by Bcl-2 during hyperoxia-induced cell death in L929 cells. In these cells, hyperoxia promoted apoptosis without DNA fragmentation.

View Article and Find Full Text PDF

The poor ability of respiratory epithelial cells to proliferate and differentiate in vitro into a pseudostratified mucociliated epithelium limits the general use of primary airway epithelial cell (AEC) cultures generated from patients with rare diseases, such as cystic fibrosis (CF). Here, we describe a procedure to amplify AEC isolated from nasal polyps and generate long-term cultures of the respiratory epithelium. AEC were seeded onto microporous permeable supports that carried on their undersurface a preformed feeder layer of primary human airway fibroblasts.

View Article and Find Full Text PDF

Hyperoxia induces extensive DNA damage and lung cell death by apoptotic and nonapoptotic pathways. We analyzed the regulation of Poly(ADP-ribose)polymerase-1 (PARP-1), a nuclear enzyme activated by DNA damage, and its relation to cell death during hyperoxia in vitro and in vivo. In lung epithelial-derived A549 cells, which are known to die by necrosis when exposed to oxygen, a minimal amount of PARP-1 was cleaved, correlating with the absence of active caspase-3.

View Article and Find Full Text PDF

Exposure to high oxygen concentration causes direct oxidative cell damage through increased production of reactive oxygen species. In vivo oxygen-induced lung injury is well characterized in rodents and has been used as a valuable model of human respiratory distress syndrome. Hyperoxia-induced lung injury can be considered as a bimodal process resulting (1) from direct oxygen toxicity and (2) from the accumulation of inflammatory mediators within the lungs.

View Article and Find Full Text PDF

Hyperoxia is known to induce extensive alveolar cell death by still poorly defined mechanisms. In this study, the mitochondria-dependent cell death pathway was explored during hyperoxia-induced lung injury in mice. We observed a progressive release of cytochrome c from the mitochondria into the cytosol of alveolar cells.

View Article and Find Full Text PDF

We previously reported that exposure of mice to hyperoxia is characterized by extensive lung cell necrosis and apoptosis, mild inflammatory response, and elevated circulating levels of corticosterone. Administration of hydroxycortisone acetate during hyperoxia aggravated lung injury. Using adrenalectomized (ADX) and sham-operated (sham) mice, we studied the role of the glucocorticoids in hyperoxia-induced lung injury.

View Article and Find Full Text PDF