Proteasome dysfunction is emerging as a novel pathomechanism for the development of chronic obstructive pulmonary disease (COPD), a major leading cause of death in the world. Cigarette smoke, one of the main risk factors for COPD, impairs proteasome function in vitro and in vivo. In the present study, we dissected the molecular changes induced by cigarette smoke on the proteasome in lung epithelial cells and mouse lungs.
View Article and Find Full Text PDFCigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract.
View Article and Find Full Text PDFRationale: Patients with chronic obstructive pulmonary disease (COPD) and in particular smokers are more susceptible to respiratory infections contributing to acute exacerbations of disease. The immunoproteasome is a specialized type of proteasome destined to improve major histocompatibility complex (MHC) class I-mediated antigen presentation for the resolution of intracellular infections.
Objectives: To characterize immunoproteasome function in COPD and its regulation by cigarette smoke.