Publications by authors named "Alessandra Mezzelani"

Objective: The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly ramping up due to the spread of obesity, which is characterized by expanded and dysfunctional visceral adipose tissue (VAT). Previous studies have investigated the hepatic transcriptome across MASLD, whereas few studies have focused on VAT.

Methods: We performed RNA sequencing in 167 hepatic samples from patients with obesity and in a subset of 79 matched VAT samples.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by impairments in social interaction, communication, and the presence of restricted, repetitive behaviors [...

View Article and Find Full Text PDF

Introduction: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data.

View Article and Find Full Text PDF

Visceral adipose tissue (VAT) contributes to metabolic dysfunction-associated steatotic liver disease (MASLD), releasing lipogenic substrates and cytokines which promote inflammation. Metabolic healthy obese individuals (MHO) may shift towardsunhealthy ones (MUHO) who develop MASLD, although the mechanisms are still unexplained. Therefore, we aimed to identify dysfunctional pathways and transcriptomic signatures shared by liver and VAT and to outline novel obesity-related biomarkers which feature MASLD in MUHO subjects, at higher risk of progressive liver disease and extrahepatic comorbidities.

View Article and Find Full Text PDF

Chronic pain is a widespread disorder affecting millions of people and is insufficiently addressed by current classes of analgesics due to significant long-term or high dosage side effects. A promising approach that was recently proposed involves the systemic inhibition of the voltage-gated sodium channel Nav1.7, capable of cancelling pain perception completely.

View Article and Find Full Text PDF

Intestinal microorganisms impact health by maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions, including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterised by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut microbiota cross-talk.

View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes.

View Article and Find Full Text PDF
Article Synopsis
  • * Multi-omics analyses identified 35,960 genomic variants, as well as differences in proteins and miRNAs between affected and unaffected cats.
  • * Key findings suggest that the disorder is complex rather than linked to a single gene mutation, with amyloid deposits arising from a mix of normal proteins, classifying it as AA amyloidosis.
View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) affects approximately 1 child in 54, with a 35-fold increase since 1960. Selected studies suggest that part of the recent increase in prevalence is likely attributable to an improved awareness and recognition, and changes in clinical practice or service availability. However, this is not sufficient to explain this epidemiological phenomenon.

View Article and Find Full Text PDF

Gene-environment interactions, by means of abnormal macromolecular intestinal adsorption, is one of the possible causes of autism spectrum disorders (ASD) predominantly in patients with gastrointestinal disorders. Pre-haptoglobin-2 (zonulin), encoded by the Haptoglobin (HP) allele-2 gene, enhances the intestinal permeability by modulation of intercellular tight junctions. The two alleles of HP, HP1 and HP2, differ for 2 extra exons in HP2 that result in exon duplication undetectable by classic genome-wide association studies.

View Article and Find Full Text PDF

Current studies suggest that autism spectrum disorders (ASDs) may be caused by many genetic factors. In fact, collectively considering multiple studies aimed at characterizing the basic pathophysiology of ASDs, a large number of genes has been proposed. Addressing the problem of molecular data interpretation using gene networks helps to explain genetic heterogeneity in terms of shared pathways.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called "disease modules." In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists.

View Article and Find Full Text PDF

Gene-environment interaction is an emerging hypothesis to expound not only the autism pathogenesis but also the increased incidence of neurodevelopmental disorders (such as autistic spectrum disorder, attention-deficit, hyperactivity disorder). Among xenobiotics, mycotoxins are worldwide contaminants of food that provoke toxicological effects, crucially resembling several symptoms associated with autism such as oxidative stress, intestinal permeability, and inflammation. Here, we focused on a group of mycotoxins to test their role in the manifestation of autism, try to explain their mechanism of action, and discuss possible preventive and therapeutic interventions.

View Article and Find Full Text PDF

Environmental factors and genetic susceptibility are implicated in the increased risk of autism spectrum disorder (ASD). Mycotoxins are agricultural contaminants of fungal origin that represent real risk factors for human health and especially for children. Thus, the main hypothesis of this work is that the deterioration of the clinical manifestation of autism in children may result from the exposure to mycotoxins through the consumption of contaminated food.

View Article and Find Full Text PDF

During embryonic development, new arteries, and veins form from preexisting vessels in response to specific angiogenic signals. Angiogenic signaling is complex since not all endothelial cells exposed to angiogenic signals respond equally. Some cells will be selected to become tip cells and acquire migration and proliferation capacity necessary for vessel growth while others, the stalk cells become trailer cells that stay connected with pre-existing vessels and act as a linkage to new forming vessels.

View Article and Find Full Text PDF

Since involved in synaptic transmission and located on X-chromosome, neuroligins 3 and 4X have been studied as good positional and functional candidate genes for autism spectrum disorder pathogenesis, although contradictory results have been reported. Here, we performed a case-control study to assess the association between noncoding genetic variants in and genes and autism, in an Italian cohort of 202 autistic children analyzed by high-resolution melting. The results were first compared with data from 379 European healthy controls (1000 Genomes Project) and then with those from 1061 Italian controls genotyped by Illumina single nucleotide polymorphism (SNP) array 1M-duo.

View Article and Find Full Text PDF

The interpretation of genome-wide association study is difficult, as it is hard to understand how polymorphisms can affect gene regulation, in particular for trans-regulatory elements located far from their controlling gene. Using RNA or protein expression data as phenotypes, it is possible to correlate their variations with specific genotypes. This technique is usually referred to as expression Quantitative Trait Loci (eQTLs) analysis and only few packages exist for the integration of genotype patterns and expression profiles.

View Article and Find Full Text PDF

The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet.

View Article and Find Full Text PDF

Background: Autism is an increasing neurodevelopmental disease that appears by 3 years of age, has genetic and/or environmental etiology, and often shows comorbid situations, such as gastrointestinal (GI) disorders. Autism has also a striking sex-bias, not fully genetically explainable.

Objective: Our goal was to explain how and in which predisposing conditions some compounds can impair neurodevelopment, why this occurs in the first years of age, and, primarily, why more in males than females.

View Article and Find Full Text PDF

Background: The 9p21.3 locus is strongly associated with the risk of coronary artery disease (CAD) and with type 2 diabetes (T2D). We investigated the association of 9p21.

View Article and Find Full Text PDF

Two novel Gram-positive-staining, acidophilic strains were isolated from soil samples. Both show typical features of filamentous actinomycetes. On the basis of 16S rRNA gene sequence analysis, the strains are members of the family Micromonosporaceae.

View Article and Find Full Text PDF

Meta-analysis of microarray data is increasingly important, considering both the availability of multiple platforms using disparate technologies and the accumulation in public repositories of data sets from different laboratories. We addressed the issue of comparing gene expression profiles from two microarray platforms by devising a standardized investigative strategy. We tested this procedure by studying MDA-MB-231 cells, which undergo apoptosis on treatment with resveratrol.

View Article and Find Full Text PDF

We recently developed a multiplex polymerase chain reaction (PCR) system for the simultaneous detection of four transgenic maize (MON810, Bt176, Bt11, and GA21), one transgenic soybean (Roundup Ready), and two control genes (lectin and zein). Because PCR can lead to ambiguous interpretations due to low specificity, we have developed the ligation detection reaction (LDR) combined with a universal array as a molecular tool to confirm results of PCR analysis. Here, we describe the PCR-LDR-universal array procedure and demonstrate its specificity in revealing the presence of transgenic DNA in experimental samples, raw materials, and commercial foodstuffs.

View Article and Find Full Text PDF

The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important.

View Article and Find Full Text PDF