Due to the increasing demand of metals by industry and the limited availability of natural resources, the secondary supply of these elements from discarded products, such as waste electrical and electronic equipment (WEEE), is an important strategy for pursuing a sustainable development. Nevertheless, the complex and heterogeneous composition of this waste stream stands as one of the main drawbacks in the definition of innovative recovery processes. This study investigated the recovery potential of a multi-step leaching process to extract the strategic metals, namely precious metals and rare earth elements (REEs), from the dust produced during the industrial shredding treatment of WEEE.
View Article and Find Full Text PDFCritical raw materials (CRMs) are essential in the development of novel high-tech applications. They are essential in sustainable materials and green technologies, including renewable energy, emissionfree electric vehicles and energy-efficient lighting. However, the sustainable supply of CRMs is a major concern.
View Article and Find Full Text PDFA bioleaching process developed in two separate steps was investigated for the recovery of base metals, precious metals and rare earth elements from dusts generated by Waste Electrical and Electronic Equipment (WEEE) shredding. In the first step, base metals were almost completely leached from the dust in 8 days by Acidithiobacillus thiooxidans (DSM 9463) that lowered the pH of the leaching solution from 3.5 to 1.
View Article and Find Full Text PDF