Publications by authors named "Alessandra Maria Storaci"

Unlabelled: Cancer cells exhibit metabolic plasticity to meet oncogene-driven dependencies while coping with nutrient availability. A better understanding of how systemic metabolism impacts the accumulation of metabolites that reprogram the tumor microenvironment (TME) and drive cancer could facilitate development of precision nutrition approaches. Using the Hi-MYC prostate cancer mouse model, we demonstrated that an obesogenic high-fat diet (HFD) rich in saturated fats accelerates the development of c-MYC-driven invasive prostate cancer through metabolic rewiring.

View Article and Find Full Text PDF

Background: Lung regions excluded from mechanical insufflation are traditionally assumed to be spared from ventilation-associated lung injury. However, preliminary data showed activation of potential mechanisms of injury within these non-ventilated regions (e.g.

View Article and Find Full Text PDF

Glioblastoma (GBM), a very aggressive and incurable tumor, often results from constitutive activation of EGFR (epidermal growth factor receptor) and of phosphoinositide 3-kinase (PI3K). To understand the role of autophagy in the pathogenesis of glial tumors , we used an established model of glioma based on overexpression in larval glial cells of an active human and of the PI3K homolog . Interestingly, the resulting hyperplastic glia express high levels of key components of the lysosomal-autophagic compartment, including vacuolar-type H-ATPase (V-ATPase) subunits and ref(2)P (refractory to Sigma P), the homolog of SQSTM1/p62.

View Article and Find Full Text PDF

The ATP6V1G1 subunit (V1G1) of the vacuolar proton ATPase (V-ATPase) pump is crucial for glioma stem cells (GSC) maintenance and tumorigenicity. Moreover, V-ATPase reprograms the tumor microenvironment through acidification and release of extracellular vesicles (EV). Therefore, we investigated the role of V1G1 in GSC small EVs and their effects on primary brain cultures.

View Article and Find Full Text PDF

The regulators of mitochondrial cell death in cancer have remained elusive, hampering the development of new therapies. Here, we showed that protein isoforms of mitochondrial fission factor (MFF1 and MFF2), a molecule that controls mitochondrial size and shape, that is, mitochondrial dynamics, were overexpressed in patients with non-small cell lung cancer and formed homo- and heterodimeric complexes with the voltage-dependent anion channel-1 (VDAC1), a key regulator of mitochondrial outer membrane permeability. MFF inserted into the interior hole of the VDAC1 ring using Arg225, Arg236, and Gln241 as key contact sites.

View Article and Find Full Text PDF

Background: Mitochondrial functions are exploited in cancer and provide a validated therapeutic target. However, how this process is regulated has remained mostly elusive and the identification of new pathways that control mitochondrial integrity in cancer is an urgent priority.

Methods: We studied clinically-annotated patient series of primary and metastatic prostate cancer, representative cases of multiple myeloma (MM) and publicly available genetic databases.

View Article and Find Full Text PDF

Background: Cancer cells use specific V-ATPase subunits to activate oncogenic pathways. Therefore, we investigated V-ATPase deregulation in aggressive gliomas and associated signaling.

Methods: V-ATPase genes expression and associated pathways were analyzed in different series of glioma available from public databases, as well as in patients' cohort.

View Article and Find Full Text PDF

Background: The V-ATPase proton pump controls acidification of intra and extra-cellular milieu in both physiological and pathological conditions. We previously showed that some V-ATPase subunits are enriched in glioma stem cells and in patients with poor survival. In this study, we investigated how expression of a GBM-like V-ATPase pump influences the non-neoplastic brain microenvironment.

View Article and Find Full Text PDF

The suppressor of Lin-12-like (C. elegans) (SEL1L) is involved in the endoplasmic reticulum (ER)-associated degradation pathway, malignant transformation and stem cells. In 412 formalin-fixed and paraffin-embedded brain tumors and 39 Glioblastoma multiforme (GBM) cell lines, we determined the frequency of five SEL1L single nucleotide genetic variants with regulatory and coding functions by a SNaPShot™ assay.

View Article and Find Full Text PDF