Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein-protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges.
View Article and Find Full Text PDFObjectives: Human babesiosis is an emerging and potentially fatal tick-borne disease caused by intraerythrocytic parasites of the Babesia genus. Among these, Babesia duncani is particularly notable for causing severe and life-threatening illness in humans. Accurate diagnosis and effective disease management hinge on the detection of active B.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs.
View Article and Find Full Text PDFUnlabelled: Human babesiosis is a rapidly emerging and potentially fatal tick-borne disease caused by intraerythrocytic apicomplexan parasites of the genus. Among the various species of that infect humans, has been found to cause severe and life-threatening infections. Detection of active infection is critical for accurate diagnosis and effective management of the disease.
View Article and Find Full Text PDFPlant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes.
View Article and Find Full Text PDFThe combination of advanced mass spectrometry and enrichment-based sample preparation methods has enhanced analytical capabilities in clinical proteomics. In this chapter, we describe a method of proteome analysis to identify Borrelia-derived peptides in urine that includes a sample affinity enrichment method coupled with liquid chromatography tandem mass spectrometry analysis and a bioinformatic peptide authentication algorithm.
View Article and Find Full Text PDFChemotherapy resistance is considered one of the main causes of tumor relapse, still challenging researchers for the identification of the molecular mechanisms sustaining its emergence. Here, we setup and characterized chemotherapy-resistant models of Medulloblastoma (MB), one of the most lethal pediatric brain tumors, to uncover targetable vulnerabilities associated to their resistant phenotype. Integration of proteomic, transcriptomic and kinomic data revealed a significant deregulation of several pathways in resistant MB cells, converging to cell metabolism, RNA/protein homeostasis, and immune response, eventually impacting on patient outcome.
View Article and Find Full Text PDFThe PD-1/PD-L1 checkpoint pathway is important for regulating immune responses and can be targeted by immunomodulatory drugs to treat a variety of immune disorders. However, the precise protein-protein interactions required for the initiation of PD-1/PD-L1 signaling are currently unknown. Previously, we designed a series of first-generation PD-1 targeting peptides based on the native interface region of programmed death ligand 1 (PD-L1) that effectively reduced PD-1/PD-L1 binding.
View Article and Find Full Text PDFCellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes.
View Article and Find Full Text PDFWith over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena.
View Article and Find Full Text PDFDifferent amphiphilic co-polymers have been introduced to produce polymer-lipid particles with nanodisc structure composed of an inner lipid bilayer and polymer chains self-assembled as an outer belt. These particles can be used to stabilize membrane proteins in solution and enable their characterization by means of biophysical methods, including small-angle X-ray scattering (SAXS). Some of these co-polymers have also been used to directly extract membrane proteins together with their associated lipids from native membranes.
View Article and Find Full Text PDFSupported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini , , 2020, , 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides.
View Article and Find Full Text PDFWe characterized the in vivo interstitial fluid (IF) content of extracellular vesicles (EVs) using the GFP-4T1 syngeneic murine cancer model to study EVs in-transit to the draining lymph node. GFP labelling confirmed the IF EV tumour cell origin. Molecular analysis revealed an abundance of IF EV-associated proteins specifically involved in mitophagy and secretory autophagy.
View Article and Find Full Text PDFTissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S)-pseudotyped viruses are commonly used for quantifying antiviral drugs and neutralizing antibodies. Here, we describe the development of a hybrid alphavirus-SARS-CoV-2 (Ha-CoV-2) pseudovirion, which is a non-replicating SARS-CoV-2 virus-like particle composed of viral structural proteins (S, M, N, and E) and an RNA genome derived from a fast-expressing alphaviral vector. We validated Ha-CoV-2 for rapid quantification of neutralization antibodies, antiviral drugs, and viral variants.
View Article and Find Full Text PDFSARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection.
View Article and Find Full Text PDFThe bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL).
View Article and Find Full Text PDFNanodiscs based on membrane scaffold proteins (MSPs) and phospholipids are used as membrane mimics to stabilize membrane proteins in solution for structural and functional studies. Combining small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and time-resolved small-angle neutron scattering (TR-SANS), we characterized the structure and lipid bilayer properties of five different nanodiscs made with dimyristoylphosphatidylcholine and different MSPs varying in size, charge, and circularization. Our SAXS modeling showed that the structural parameters of the embedded lipids are all similar, irrespective of the MSP properties.
View Article and Find Full Text PDFEukaryotic and prokaryotic cell membranes are difficult to characterize directly with biophysical methods. Membrane model systems, that include fewer molecular species, are therefore often used to reproduce their fundamental chemical and physical properties. In this context, natural lipid mixtures directly extracted from cells are a valuable resource to produce advanced models of biological membranes for biophysical investigations and for the development of drug testing platforms.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common form of arthritis and the fastest growing cause of chronic disability in the world. Formation of the ternary IL-1β /IL-1R1/IL-1RAcP protein complex and its downstream signaling has been implicated in osteoarthritis pathology. Current OA therapeutic approaches target either the cytokine IL-1β or the primary receptor IL-1RI but do not exploit the potential of the secondary receptor IL-1RAcP.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2020
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes.
View Article and Find Full Text PDF