Mesenchymal stromal cells (MSCs) are structural components of the bone marrow (BM) niche, where they functionally interact with hematopoietic stem cells and more differentiated progenitors, contributing to hematopoiesis regulation. A growing body of evidence is nowadays pointing to a further crucial contribution of MSCs to malignant hematopoiesis. In the context of B-cell acute lymphoblastic leukemia (B-ALL), MSCs can play a pivotal role in the definition of a leukemia-supportive microenvironment, impacting on disease pathogenesis at different steps including onset, maintenance and progression.
View Article and Find Full Text PDFMechanisms underlying the resistance of acute lymphoblastic leukemia (ALL) blasts to l-asparaginase are still incompletely known. Here we demonstrate that human primary bone marrow mesenchymal stromal cells (MSCs) successfully adapt to l-asparaginase and markedly protect leukemic blasts from the enzyme-dependent cytotoxicity through an amino acid trade-off. ALL blasts synthesize and secrete glutamine, thus increasing extracellular glutamine availability for stromal cells.
View Article and Find Full Text PDFB-cell acute lymphoblastic leukaemia (B-ALL) reprograms the surrounding bone marrow (BM) stroma to create a leukaemia-supportive niche. To elucidate the contribution of immune cells to the leukaemic microenvironment, we investigated the involvement of monocyte/macrophage compartments, as well as several recruitment pathways in B-ALL development. Immunohistochemistry analyses showed that CD68-expressing macrophages were increased in leukaemic BM biopsies, compared to controls and predominantly expressed the M2-like markers CD163 and CD206.
View Article and Find Full Text PDFThe TEL-AML1 fusion gene, generated by the t(12;21) chromosome translocation, arises in a progenitor/stem cell and could induce clonal expansion of a persistent preleukemic B-cell clone which, on acquisition of secondary alterations, may turn into full-blown leukemia. During infections, deregulated cytokine signaling, including transforming growth factor β (TGF-β), can further accelerate this process by creating a protumoral bone marrow (BM) microenvironment. Here, we show that activin A, a member of the TGF-β family induced under inflammatory conditions, inhibits the proliferation of normal progenitor B cells but not that of preleukemic TEL-AML1-positive clones, thereby providing a selective advantage to the latter.
View Article and Find Full Text PDF