Publications by authors named "Alessandra Dellaquila"

Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen.

View Article and Find Full Text PDF

Liver tissue engineering approaches aim to support drug testing, assistance devices, or transplantation. However, their suitability for clinical application remains unsatisfactory. Herein, we demonstrate the beneficial and biocompatible use of porous pullulan-dextran hydrogel for the self-assembly of hepatocytes and biliary-like cells into functional 3D microtissues.

View Article and Find Full Text PDF

In tissue engineering, the composition and the structural arrangement of molecular components within the extracellular matrix (ECM) determine the physical and biochemical features of a scaffold, which consequently modulate cell behavior and function. The microenvironment of the ECM plays a fundamental role in regulating angiogenesis. Numerous strategies in tissue engineering have attempted to control the spatial cues mimicking in vivo angiogenesis by using simplified systems.

View Article and Find Full Text PDF

Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication.

View Article and Find Full Text PDF

Scaffolds for bone regeneration have been engineered by a plethora of manufacturing technologies and biomaterials. However, the performance of these systems is often limited by lack of robustness in the process design, that hampers their scalability to clinical application. In the present study, Design of Experiment (DoE) was used as statistical tool to design the biofabrication of hybrid hydroxyapatite (HA)/collagen scaffolds for bone regeneration and optimize their integration in a multilayer osteochondral device.

View Article and Find Full Text PDF

Leveraging the advantageous material properties of recently developed soft thermoplastic elastomer materials, this work presents the facile and rapid fabrication of composite membrane-integrated microfluidic devices consisting of Flexdym polymer and commercially available porous polycarbonate membranes. The three-layer devices can be fabricated in under 2.5 h, consisting of a 2-min hot embossing cycle, conformal contact between device layers and a low-temperature baking step.

View Article and Find Full Text PDF