The application of the Radon (Rn) deficit technique using subsurface soil gas probes for the identification and quantification of light non-aqueous phase liquids (LNAPL) has provided positive outcomes in recent years. This study presents an alternative method for applying this technique in the headspace of groundwater monitoring wells. The developed protocol, designed for groundwater monitoring wells with a portion of their screen in the vadose zone, is based on the use of portable equipment that allows rapid measurement of the Rn soil gas activity in the vadose zone close to the water table (i.
View Article and Find Full Text PDFThe Radon (Rn) deficit technique is a rapid, low-cost, and non-invasive method to identify and quantify light non-aqueous phase liquids (LNAPL) in the soil. LNAPL saturation is typically estimated from Rn deficit using Rn partition coefficients, assuming equilibrium conditions. This work examines the applicability of this method in the presence of local advective fluxes that can be generated by groundwater fluctuations or biodegradation processes in the source zone.
View Article and Find Full Text PDFIn the last decades radon (Rn) has been widely proposed as a naturally occurring tracer for non-aqueous phase liquids (NAPL) in the soil. This work examines the feasibility of using soil gas data collected at some distance from the source zone for the application of the Rn deficit technique for the identification and quantification of NAPL contamination. To this end, we used a steady-state 1-D analytical solution that is based on a 3-layer model that allows to simulate the transport and distribution of Rn in the source zone, capillary fringe and overlying unsaturated soil.
View Article and Find Full Text PDF