Durum wheat (DW) is one of the major crops grown in the Mediterranean area, a climate-vulnerable region where the increase in day/night (d/n) temperature is severely threatening DW yield stability. In order to improve DW heat tolerance, the introgression of chromosomal segments derived from the wild gene pool is a promising strategy. Here, four DW- spp.
View Article and Find Full Text PDFIncreased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic species.
View Article and Find Full Text PDFAbiotic stress occurrence and magnitude are alarmingly intensifying worldwide. In the Mediterranean basin, heat waves and precipitation scarcity heavily affect major crops such as durum wheat (DW). In the search for tolerant genotypes, the identification of genes/QTL in wild wheat relatives, naturally adapted to harsh environments, represents a useful strategy.
View Article and Find Full Text PDF