Publications by authors named "Alessandra C Martini"

Unlabelled: Alzheimer's disease (AD) is a multifactorial pathology, with most cases having a sporadic origin. Recently, knock-in (KI) mouse models, such as the novel humanized amyloid-β (hAβ)-KI, have been developed to better resemble sporadic human AD.

Methods: Here, we compared hippocampal publicly available transcriptomic profiles of transgenic (5xFAD and APP/PS1) and KI (hAβ-KI) mouse models with early- (EOAD) and late- (LOAD) onset AD patients.

View Article and Find Full Text PDF
Article Synopsis
  • * The model was trained on an image-tile dataset without human-drawn bounding boxes and was evaluated against a manually-annotated dataset from various institutions, showing competitive average precision scores compared to neuropathology experts.
  • * It offers rapid scoring capabilities, enabling analysis of WSIs in minutes on standard workstations, making it a practical tool for pathologists without needing specialized hardware like GPUs.
View Article and Find Full Text PDF

Dilation of perivascular spaces (PVS) in the brain may indicate poor fluid drainage due to the accumulation of perivascular cell debris, waste, and proteins, including amyloid-beta (Aβ). No prior study has assessed whether plasma Aβ levels are related to PVS in older adults without dementia. Independently living older adults (N = 56, mean age = 68.

View Article and Find Full Text PDF

Slow paced breathing via heart rate variability (HRV) biofeedback stimulates vagus-nerve pathways that counter noradrenergic stress and arousal pathways that can influence production and clearance of Alzheimer's disease (AD)-related proteins. Thus, we examined whether HRV biofeedback intervention affects plasma Αβ40, Αβ42, total tau (tTau), and phosphorylated tau-181 (pTau-181) levels. We randomized healthy adults (N = 108) to use slow-paced breathing with HRV biofeedback to increase heart rate oscillations (Osc+) or to use personalized strategies with HRV biofeedback to decrease heart rate oscillations (Osc-).

View Article and Find Full Text PDF

Precise, scalable, and quantitative evaluation of whole slide images is crucial in neuropathology. We release a deep learning model for rapid object detection and precise information on the identification, locality, and counts of cored plaques and cerebral amyloid angiopathies (CAAs). We trained this object detector using a repurposed image-tile dataset without any human-drawn bounding boxes.

View Article and Find Full Text PDF

Women are disproportionately affected by Alzheimer's disease (AD), yet little is known about sex-specific effects on the development of AD in the Down syndrome (DS) population. DS is caused by a full or partial triplication of chromosome 21, which harbors the amyloid precursor protein (APP) gene, among others. The majority of people with DS in their early- to mid-40s will accumulate sufficient amyloid-beta (Aβ) in their brains along with neurofibrillary tangles (NFT) for a neuropathological diagnosis of AD, and the triplication of the APP gene is regarded as the main cause.

View Article and Find Full Text PDF

Elderly cats develop age-related behavioral and neuropathological changes that ultimately lead to cognitive dysfunction syndrome (CDS). These neuropathologies share similarities to those seen in the brains of humans with Alzheimer's disease (AD), including the extracellular accumulation of -amyloid (Aβ) and intraneuronal deposits of hyperphosphorylated tau, which are considered to be the two major hallmarks of AD. The present study assessed the presence and distribution of Aβ and tau hyperphosphorylation within the cat brain ( = 55 cats), and how the distribution of these proteins changes with age and the presence of CDS.

View Article and Find Full Text PDF
Article Synopsis
  • Microglia play a key role in brain development and are implicated in Alzheimer's disease, particularly in individuals with Down syndrome (DS), who have an increased risk for AD.
  • Research using iPSC-based organoid models shows that DS microglia are more active in synaptic pruning, which impacts neuronal functions.
  • The study finds that DS microglia show signs of aging when exposed to harmful tau proteins, suggesting that manipulating type I interferon receptors could enhance their function and potentially prevent age-related changes.
View Article and Find Full Text PDF

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk.

View Article and Find Full Text PDF
Article Synopsis
  • - Microglia play a critical role in Alzheimer's disease, but their specific influence on disease progression and lifespan is not well understood.
  • - Researchers created a mouse model lacking microglia, leading to an increase in cerebral amyloid angiopathy, brain calcification, hemorrhages, and premature death; injecting healthy microglia reversed these effects.
  • - Analysis of human Alzheimer's tissue revealed that microglia can engulf calcium crystals, a process hindered by the loss of the TREM2 gene, which is linked to increased Alzheimer's risk.
View Article and Find Full Text PDF

People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS.

View Article and Find Full Text PDF

Down syndrome (DS), or trisomy 21, is the most common genetic cause of intellectual disability [...

View Article and Find Full Text PDF

Alzheimer's disease (AD) is conceptualized as a synaptic failure disorder in which loss of glutamatergic synapses is a major driver of cognitive decline. Thus, novel therapeutic strategies aimed at regenerating synapses may represent a promising approach to mitigate cognitive deficits in AD patients. At present, no disease-modifying drugs exist for AD, and approved therapies are palliative at best, lacking in the ability to reverse the synaptic failure.

View Article and Find Full Text PDF

Down syndrome (DS) is a form of accelerated aging, and people with DS are highly prone to aging-related conditions that include vascular and neurological disorders. Due to the overexpression of several genes on Chromosome 21, for example genes encoding amyloid precursor protein (), superoxide dismutase (), and some of the interferon receptors, those with DS exhibit significant accumulation of amyloid, phospho-tau, oxidative stress, neuronal loss, and neuroinflammation in the brain as they age. In this review, we will summarize the major strides in this research field that have been made in the last few decades, as well as discuss where we are now, and which research areas are considered essential for the field in the future.

View Article and Find Full Text PDF

The gene-regulatory landscape of the brain is highly dynamic in health and disease, coordinating a menagerie of biological processes across distinct cell types. Here, we present a multi-omic single-nucleus study of 191,890 nuclei in late-stage Alzheimer's disease (AD), accessible through our web portal, profiling chromatin accessibility and gene expression in the same biological samples and uncovering vast cellular heterogeneity. We identified cell-type-specific, disease-associated candidate cis-regulatory elements and their candidate target genes, including an oligodendrocyte-associated regulatory module containing links to APOE and CLU.

View Article and Find Full Text PDF

The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aβ under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aβ sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression.

View Article and Find Full Text PDF

Introduction: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD.

View Article and Find Full Text PDF

MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA-181a (miR-181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity-related proteins at synapses. We have previously demonstrated that miR-181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity-related proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is currently conceptualized as a disease of synaptic failure. Synaptic impairments are robust within the AD brain and better correlate with dementia severity when compared with other pathological features of the disease. Nevertheless, the series of events that promote synaptic failure still remain under debate, as potential triggers such as β-amyloid (Aβ) can vary in size, configuration and cellular location, challenging data interpretation in causation studies.

View Article and Find Full Text PDF

Defects in interleukin-1β (IL-1β)-mediated cellular responses contribute to Alzheimer's disease (AD). To decipher the mechanism associated with its pathogenesis, we investigated the molecular events associated with the termination of IL-1β inflammatory responses by focusing on the role played by the target of Myb1 (TOM1), a negative regulator of the interleukin-1β receptor-1 (IL-1R1). We first show that TOM1 steady-state levels are reduced in human AD hippocampi and in the brain of an AD mouse model versus respective controls.

View Article and Find Full Text PDF

Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS).

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most devastating diseases that currently affects the aging population. Recent evidence indicates that DM is a risk factor for many brain disorders, due to its direct effects on cognition. New findings have shown that the microtubule-associated protein tau is pathologically processed in DM; however, it remains unknown whether pathological tau modifications play a central role in the cognitive deficits associated with DM.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that impairs memory and causes cognitive and psychiatric deficits. New evidences indicate that AD is conceptualized as a disease of synaptic failure, although the molecular and cellular mechanisms underlying these defects remain to be elucidated. Determining the timing and nature of the early synaptic deficits is critical for understanding the progression of the disease and for identifying effective targets for therapeutic intervention.

View Article and Find Full Text PDF

Alzheimer's disease (AD) impairs memory and causes significant cognitive deficits. The disease course is prolonged, with a poor prognosis, and thus exacts an enormous economic and social burden. Over the past two decades, genetically engineered mouse models have proven indispensable for understanding AD pathogenesis, as well as for discovering new therapeutic targets.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmi24qahfqqd2kfno0cah5hkngn4dv2ek): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once