Iron-sulfur clusters are metal cofactors that are present in all domains of life. Many enzymes that require these cofactors have biotechnological importance, because they can be used to uncover catabolic routes to new sugar substrates or can be a critical part of pathways to produce chemicals and biofuels. However, the expression of these iron-sulfur enzymes of bacterial origin in yeast at high levels is a significant bottleneck.
View Article and Find Full Text PDFProduction of chemicals in microorganisms is no longer restricted to products arising from native metabolic potential. In this review, we highlight the evolution of metabolic engineering studies, from the production of natural chemicals fermented from biomass hydrolysates, to the engineering of microorganisms for the production of non-natural chemicals. Advances in synthetic biology are accelerating the successful development of microbial cell factories to directly produce value-added chemicals.
View Article and Find Full Text PDFIn this review, we describe our experience in building a pilot-scale packed-bed solid-state fermentation (SSF) bioreactor, with provision for intermittent mixing, and the use of this bioreactor to produce pectinases and lipases by filamentous fungi. We show that, at pilot scale, special attention must be given to several aspects that are not usually problematic when one works with laboratory-scale SSF bioreactors. For example, it can be a challenge to produce large amounts of inoculum if the fungus does not sporulate well.
View Article and Find Full Text PDFThe most abundant hexuronate in plant biomass is D-galacturonate. D-Galacturonate is the main constituent of pectin. Pectin-rich biomass is abundantly available as sugar beet pulp or citrus processing waste and is currently mainly used as cattle feed.
View Article and Find Full Text PDFBackground: Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp.
View Article and Find Full Text PDFRecently, it has been suggested that pectinases could be used to hydrolyze pectin in biorefineries based on pectin-rich agro-industrial wastes. However, for this to be viable, the cost of their production would need to be lowered significantly. In fact, over the last few decades, there have been many attempts to improve pectinase production by existing strains or to screen for new strains from environmental isolates.
View Article and Find Full Text PDFCitrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer.
View Article and Find Full Text PDFAgar is a complex mixture of gel-forming polysaccharides. Gelling agents are very often used to provide proper support for plants grown in semisolid culture media. And agar is the most frequently used gelling agent in plant tissue culture media.
View Article and Find Full Text PDF