The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in HO and PDS systems but promoted in PMS-involved systems.
View Article and Find Full Text PDFA cheap and easy to use Arduino self-assembled automatic system was employed to continuously monitor the hydrogen peroxide consumption during the photo-Fenton degradation of caffeine, selected as model target compound. The automatic system made it possible to measure the HO concentration in the reaction cell via a colorimetric reaction and to take samples for HPLC analysis minimising the operator manual intervention and exposure to UV radiation. The obtained results were compared in terms of LOD and LOQ with HO measurements manually performed using UV-Vis spectrophotometry, evidencing better analytical performance when using the automatic system; LOD and LOQ were respectively 0.
View Article and Find Full Text PDFPathogens in drinking water remain a challenge for human health, photo-Fenton process is a promising technique for pathogen inactivation, herein, two common iron oxides, hematite and magnetite mediate persulfate (peroxymonosulfate-PMS - and peroxydisulfate-PDS) involved photo-Fenton-like processes were constructed for E. coli inactivation, and the inactivation performance was investigated and compared with the photo-Fenton process under a low intensity UVA irradiation. Results indicated that with a low dose of iron oxides (1 mg/L) and inorganic peroxides (10 mg/L), PMS-involved photo-Fenton-like process is the best substitute for the photo-Fenton one over pH range of 5-8.
View Article and Find Full Text PDFPhoto-Fenton processes activated by biodegradable Fe(III)-EDDS complexes have attracted huge attention from the scientific community, but the operative mechanism of the photo-activation of HO in the presence of Fe(III)-EDDS has not been fully clarified yet. The application of the Fe(III)-EDDS complex in Fenton and photo-Fenton (mainly under UV-B light) processes, using 4-chlorophenol (4-CP) as a model pollutant was explored to give insights into the operative mechanism. Furthermore, the potential synergistic contribution of soybean peroxidase (SBP) was investigated, since it has been reported that upon irradiation of Fe(III)-EDDS the production of HO can occur.
View Article and Find Full Text PDFThe assessment of environmental sustainability has assumed great importance during the study and implementation of a new process, including those aimed to waste valorization and reuse. In this research, the environmental performance of the photo-Fenton processes was evaluated using the life cycle assessment (LCA) methodology. In particular, photo-Fenton conducted in mild conditions (almost neutral pH), using soluble bio-organic substances as auxiliary agents were compared with the "classic" photo-Fenton run at pH 2.
View Article and Find Full Text PDFAntifungal azoles are the most frequently used fungicides worldwide and occur as active ingredients in many antifungal pharmaceuticals, biocides, and pesticides. Azole fungicides are frequent environmental contaminants and can affect the quality of surface waters, groundwater, and drinking water. This study examined the potential of combined vacuum UV (185 nm) and UVC (254 nm) irradiation (VUV/UVC) of the azole fungicide tebuconazole and the transformation product 1,2,4-trizole on degradation and changes in ecotoxicity.
View Article and Find Full Text PDFThe Lab4treat experience has been developed to demonstrate the use of magnetic materials in environmental applications. It was projected in the frame of the European project Mat4Treat, and it was tested several times in front of different audiences ranging from school students to the general public in training and/or divulgation events. The experience lends itself to discuss several aspects of actuality, physics and chemistry, which can be explained by modulating the discussion depth level, in order to meet the interests of younger or more experienced people and expand their knowledge.
View Article and Find Full Text PDFAnatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g.
View Article and Find Full Text PDFHybrid magnetite/maghemite nanoparticles (MNP) coated with waste-sourced bio-based substances (BBS) were synthesized and studied for the degradation of phenol, chosen as a model pollutant, in water. A systematic study was undertaken in order to rationalize MNP-BBS behavior and optimize their performance. The effect of experimental parameters, such as light irradiation, addition of hydrogen peroxide, and the ratio between hydrogen peroxide and MNP-BBS concentrations, was studied.
View Article and Find Full Text PDFThe valorization of olive oil mill solid wastes (OMW) has been addressed by considering it as a possible source of humic-like substances (HLSs), to be used as auxiliary substances for photo-Fenton, employing caffeine as a target pollutant to test the efficiency of this approach. The OMW-HLS isolation encompassed the OMW basic hydrolysis, followed by ultrafiltration and drying. OMW-HLS structural features have been investigated by means of laser light scattering, fluorescence, size exclusion chromatography, and thermogravimetric analysis; moreover, the capability of OMW-HLS to generate reactive species under irradiation has been investigated using spin-trap electronic paramagnetic resonance.
View Article and Find Full Text PDFIn the present work, the photo-Fenton degradation of pentachlorophenol (PCP, 1 mg/L) has been studied under simulated and natural solar irradiation; moreover, the effect on the process efficiency of urban waste-derived soluble bio-based substances (SBO), structurally comparable to humic acids, has been investigated. Experiments showed a crucial role of PCP photolysis, present in the solar pilot plant and hindered by the Pyrex filter present in the solar simulator. Indeed, the SBO screen negatively affects PCP degradation when working under natural solar light, where the photolysis of PCP is relevant.
View Article and Find Full Text PDFThe photodegradation of an aqueous solution of diclofenac (DCF) has been attempted in the presence of hydrogen peroxide and organic/inorganic hybrid magnetic materials under simulated and real solar light. The hybrid magnetic materials have been prepared via coprecipitation synthesis starting from iron(II) and iron(III) inorganic salts in the presence of bioderived organic products (i.e.
View Article and Find Full Text PDFUrban wastes are a potential source of environment contamination, especially when they are not properly disposed. Nowadays, researchers are finding innovative solutions for recycling and reusing wastes in order to favour a sustainable development from the viewpoint of circular economy. In this context, the lignin-like fraction of biomass derived from Green Compost is a cost-effective source of soluble Bio-Based Substances (BBS-GC), namely complex macromolecules/supramolecular aggregates characterized by adsorbing and photosensitizing properties.
View Article and Find Full Text PDFThe exploitation of organic waste as a source of bio-based substances to be used in environmental applications is gaining increasing interest. In the present research, compost-derived bio-based substances (BBS-Cs) were used to prepare hybrid magnetic nanoparticles (HMNPs) to be tested as an auxiliary in advanced oxidation processes. Hybrid magnetic nanoparticles can be indeed recovered at the end of the treatment and re-used in further water purification cycles.
View Article and Find Full Text PDFIn this study, chitosan and bio-based substances (BBS) obtained from composted biowaste were used as stabilizers for the synthesis of magnet-sensitive nanoparticles (NPs) via coprecipitation method. A pyrolysis treatment was carried out on both biopolymers at 550°C, and their consequent conversion into a carbon matrix was followed by means of different physicochemical characterization techniques (mainly FTIR spectroscopy and XRD), whereas magnetic properties were evaluated by magnetization curves. The prepared materials were tested in water remediation processes from arsenic (As) species (both inorganic and organic forms).
View Article and Find Full Text PDFThis paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption.
View Article and Find Full Text PDFUrban waste-derived bioorganic substances (UW-BOS) have shown promise as chemical auxiliaries for a number of technological applications in the chemical industry and in environmental remediation. In this study, the application of these substances in the photodegradation of organic pollutants is addressed. The experimental work is specifically focused on the photolysis mechanism promoted by AC8, a UW-BOS isolated from a 2:1 w/w mixture of food and green residues, composted for 110 days, using 4-chlorophenol (4-CP) as probe molecule.
View Article and Find Full Text PDFReactive dyes are widely employed in textile industries and their removal from wastewaters is a relevant environmental problem. In addition to chemical and physical methods, several bioremediation approaches, involving intact micro-organisms or isolated enzymes, have been proposed to decolorize dye solutions. In this paper, we report the complete and fast decolourization of a Cu(II)-phthalocyanine based reactive dye (Remazol Turquoise Blue G 133) by means of the soybean peroxidase/H(2)O(2) system.
View Article and Find Full Text PDFBackground And Purpose: Surfactant-assisted soil washing and photocatalysis are well-known remediation processes of environmental concern. The application of photocatalysis to treat soil washing extracts containing 4-methylphenol, 4-ethylphenol and 4-tert-butylphenol in the presence of nonionic (C(12)E(8) and C(12)E(23)) and anionic (SDS) surfactants and some of their binary mixtures was investigated in this work by studying the pollutants degradation in the presence of TiO(2) dispersions irradiated with simulated solar light.
Materials And Methods: Clean soil samples were spiked with the investigated alkylphenols.
High-performance liquid chromatography coupled to ultraviolet diode array detection and electrospray ionization mass spectrometry was applied to monitor the photocatalytic degradation mediated by TiO2 of three sulfonated monoazo dyes (Orange I, Orange II, and Ethylorange) present in aqueous solution. Photobleaching, organic carbon, nitrogen and sulfur evolution were also followed during the process. Delayed carbon mineralization was observed with respect to both dyes disappearance and photobleaching, due to the formation of transient intermediate compounds which were in turn completely degraded.
View Article and Find Full Text PDFNitrobenzene thermal degradation was investigated using the Fenton reagent in different experimental conditions. Reaction products were analyzed by HPLC, GC-MS, LC-MS and IC. The products obtained at different nitrobenzene conversion degrees show that degradation mainly involves successive hydroxylation steps of the aromatic ring and its subsequent opening followed by oxidation of corresponding aliphatic compounds.
View Article and Find Full Text PDFThe photocatalytic oxidation of methyl-orange (C14H14N3SO3Na) dye was carried out in aqueous suspensions of polycrystalline TiO2 irradiated with artificial light until its complete mineralization was achieved. The performances of two widely used semiconductor powders were studied for comparison purposes. The dependence of dye photo-oxidation rate on various experimental parameters, including substrate concentration, semiconductor amount, and pH was investigated by using both catalysts.
View Article and Find Full Text PDFThe photodegradation of two common and very stable azo-dyes, i.e. methyl-orange (C14H14N3SO3Na) and orange II (C16H11N2SO4Na), is reported.
View Article and Find Full Text PDF