We report the synthesis and biological properties of novel analogues of Istaroxime acting as positive inotropic compounds through the inhibition of the Na(+),K(+)-ATPase. We explored the chemical space around the position 6 of the steroidal scaffold by changing the functional groups at that position and maintaining a basic oximic chain in position 3. Some compounds showed inhibitory potencies of the Na(+),K(+)-ATPase higher than Istaroxime and many of the compounds tested in vivo were safer than digoxin, the classic digitalis compound currently used for the treatment of congestive heart failure as inotropic agent.
View Article and Find Full Text PDFWe report the synthesis and biological properties of novel inhibitors of the Na(+),K(+)-ATPase as positive inotropic compounds. Following our previously described model from which Istaroxime was generated, the 5alpha,14alpha-androstane skeleton was used as a scaffold to study the space around the basic chain of our lead compound. Some compounds demonstrated higher potencies than Istaroxime on the receptor and the (E)-3-[(R)-3-pyrrolidinyl]oxime derivative, 15, was the most potent; as further confirmation of our model, the E isomers of the oxime are more potent than the Z form.
View Article and Find Full Text PDFA series of 5-substituted (3aS,7aR)-7a-methylperhydroinden-3a-ol derivatives bearing a 1(S)-(omega-aminoalkoxy)iminoalkyl or -alkenyl substituent was synthesized, starting from the Hajos-Parrish ketol 47, as simplified analogues of very potent 17beta-aminoalkyloximes with digitalis skeleton, previously reported. The target compounds were evaluated in vitro for displacement of the specific [3H]ouabain binding from the dog kidney Na(+),K(+)-ATPase receptor. Some of them revealed IC(50) values in the micromolar range.
View Article and Find Full Text PDF