Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed.
View Article and Find Full Text PDFAdvanced quantitative bioanalytical approaches in combination with network analyses allow us to answer complex biological questions, such as the description of changes in protein profiles under disease conditions or upon treatment with drugs. In the present work, three quantitative proteomic approaches-either based on labelling or not-in combination with network analyses were applied to a new in vitro cellular model of nonalcoholic fatty liver disease (NAFLD) for the first time. This disease is characterized by the accumulation of lipids, inflammation, fibrosis, and insulin resistance.
View Article and Find Full Text PDFTo characterize the high-value protein content and to discover new bioactive peptides, present in edible organisms, as silkworm pupae, semiquantitative analytical approach has been applied. The combination of appropriate protein extraction methods, semiquantitative high-resolution mass spectrometry analyses of peptides, in silico bioactivity and gene ontology analyses, allowed protein profiling of silkworm pupae (778 gene products) and the characterization of bioactive peptides. The semiquantitative analysis, based on the measurement of the emPAI, revealed the presence of high-abundance class of proteins, such as larval storage protein (LSP) class.
View Article and Find Full Text PDFWe previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN.
View Article and Find Full Text PDF