Objectives: This study aimed to evaluate silver nanoparticles (AgNPs) obtained by a 'green' route associated or not to tyrosol (TYR) against Streptococcus mutans and Candida albicans in planktonic and biofilms states.
Methods: AgNPs were obtained by a 'green' route using pomegranate extract. The minimum inhibitory concentration (MIC) against S.
Indian J Microbiol
June 2019
Nanocomposites containing antimicrobial agents and calcium phosphates have been developed. Thus, this study assessed the effects of two compounds containing silver nanoparticles (AgNPs) and β-calcium glycerophosphate (CaGP), associated or not with tyrosol (TYR), against planktonic cells and biofilms of and . The nanocompounds were synthesized through chemical and '' processes and characterized by scanning electron microscopy.
View Article and Find Full Text PDFAim: To synthesize, characterize and evaluate the antimicrobial and antibiofilm activities of novel nanocomposites containing silver nanoparticles (AgNPs) associated or not to β-calcium glycerophosphate.
Materials & Methods: These nanocomposites were produced through a 'green' route using extracts of different parts of pomegranate. Antimicrobial and antibiofilm properties against Candida albicans and Streptococcus mutans were determined by the minimum bactericidal/fungicidal concentration and biofilm density after treatments.
Biofilms confer protection from adverse environmental conditions and can be reservoirs for pathogenic organisms and sources of disease outbreaks, especially in medical devices. The goal of this research was to evaluate the anti-biofilm activities of silver nanoparticles (AgNPs) against several microorganisms of clinical interest. The antimicrobial activity of AgNPs was tested within biofilms generated under static conditions and also under high fluid shears conditions using a bioreactor.
View Article and Find Full Text PDFChronic wounds contain complex polymicrobial communities of sessile organisms that have been underappreciated because of limitations of standard culture techniques. The aim of this work was to combine recently developed next-generation investigative techniques to comprehensively describe the microbial characteristics of chronic wounds. Tissue samples were obtained from 15 patients with chronic wounds presenting to the Johns Hopkins Wound Center.
View Article and Find Full Text PDFBiofilm formation on representative implantable medical devices using a known human pathogen (Staphylococcus aureus) was significantly reduced (p < 0.01) at all time points measured (24,48, and 72 hours) by employing a novel antibacterial envelope (AIGIS Rx). The result was demonstrated using a standard US Centers for Disease Control (CDC) bioreactor model and the results were confirmed by Scanning Electron Microscopy (SEM).
View Article and Find Full Text PDFPolishing of dental prostheses can cause a dangerous cycle of cross-contamination involving dentists, laboratory technicians, patients and auxiliary personnel. The aim of this study was to show the microbial contamination in the dental laboratory during the polishing procedure of complete dentures. For this purpose, 4 experiments were conducted.
View Article and Find Full Text PDF