Publications by authors named "Alessandra Adessi"

Waste-centred-bioenergy generation have been garnering interest over the years due to environmental impact presented by fossil fuels. Waste generation is an unavoidable consequence of urbanization and population growth. Sustainable waste management techniques that are long term and environmentally benign are required to achieve sustainable development.

View Article and Find Full Text PDF

The Euganean Thermal District, situated in North-East Italy, is one of Europe's largest and oldest thermal centres. The topical application of its therapeutic thermal muds is recognised by the Italian Health System as a beneficial treatment for patients suffering from arthro-rheumatic diseases. Polysaccharides produced by the mud microbiota have been recently identified as anti-inflammatory bioactive molecules.

View Article and Find Full Text PDF

Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems.

View Article and Find Full Text PDF

There is a great scientific curiosity to discover all environments sheltering microalgae, especially those with exceptional characteristics from coldest to hottest ones, the purpose remains to explore the potential of the native microalgae flora and the research for new bioactive compounds. This study aimed to isolate a polysaccharide-producing microalga from an extreme ecosystem and to evaluate its capacity to inhibit the α-D-glucosidase enzyme. Chlorella strain is isolated from hypersaline Lake in the Algerian desert.

View Article and Find Full Text PDF

The phycosphere is a unique niche that fosters complex interactions between microalgae and associated bacteria. The formation of this extracellular environment, and the associated bacterial biodiversity, is heavily influenced by the secretion of extracellular polymers, primarily driven by phototrophic organisms. The exopolysaccharides (EPS) represent the largest fraction of the microalgae-derived exudates, which can be specifically used by heterotrophic bacteria as substrates for metabolic processes.

View Article and Find Full Text PDF

The increasing demand for food has required intensive use of pesticides which are hazardous to the ecosystem. A valid alternative is represented by biopesticides; however, these molecules are often insoluble in water, and poorly bioavailable. Nanopesticides can be engineered to reach a selected target with controlled release of the active principle.

View Article and Find Full Text PDF

Cyanobacteria are widespread phototrophic microorganisms that represent a promising biotechnological tool to satisfy current sustainability and circularity requirements. They are potential bio-factories of a wide range of compounds that can be exploited in several fields including bioremediation and nanotechnology sectors. This article aims to illustrate the most recent trends in the use of cyanobacteria for the bioremoval (i.

View Article and Find Full Text PDF

Cyanobacteria can cope with various environmental stressors, due to the excretion of exopolysaccharides (EPS). However, little is known about how the composition of these polymers may change according to water availability. This work aimed at characterizing the EPS of (Oscillatoriales; Oscillatoriaceae) and (Pseudanabaenales; Leptolyngbyaceae), when grown as biocrusts and biofilms, subject to water deprivation.

View Article and Find Full Text PDF

Cancer is a leading cause of death worldwide with a huge societal and economic impact. Clinically effective and less expensive anticancer agents derived from natural sources can help to overcome limitations and negative side effects of chemotherapy and radiotherapy. Previously, we showed that the extracellular carbohydrate polymer of a Δ overproducing mutant displayed a strong antitumor activity towards several human tumor cell lines, by inducing high levels of apoptosis through p53 and caspase-3 activation.

View Article and Find Full Text PDF

Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept.

View Article and Find Full Text PDF

Polysaccharides from pomegranate peel (Wonderful and Purple Queen® varieties) were extracted by hot water and fractionated using ethanol. Three fractions (F1-F2-F3) were obtained for each sample. Polysaccharides' yield was higher for Purple Queen®: 13% dw.

View Article and Find Full Text PDF

The study analysed polysaccharides and phenolic compounds in widely consumed but little studied date fruits varieties such as Sukkari, Ajwa, Segae, Barrny and Khalas harvested at Tamr stage. The total phenols were in similar amount in the five varieties and ranged from 20 to 50 mg/100 g DW. The decoction and successive centrifugation made it possible to collect two main polysaccharide fractions for all the selected fruits.

View Article and Find Full Text PDF

In the scenario of alarming increase in greenhouse and toxic gas emissions from the burning of conventional fuels, it is high time that the population drifts towards alternative fuel usage to obviate pollution. Hydrogen is an environment-friendly biofuel with high energy content. Several production methods exist to produce hydrogen, but the least energy intensive processes are the fermentative biohydrogen techniques.

View Article and Find Full Text PDF

Interactions amongst marine microalgae and heterotrophic bacteria drive processes underlying major biogeochemical cycles and are important for many artificial systems. These dynamic and complex interactions span the range from cooperative to competitive, and it is the diverse and intricate networks of metabolites and chemical mediators that are predicted to principally dictate the nature of the relationship at any point in time. Recent advances in technologies to identify, analyze, and quantify metabolites have allowed for a comprehensive view of the molecules available for exchange and/or reflective of organismal interactions, setting the stage for development of mechanistic understanding of these systems.

View Article and Find Full Text PDF

Therapeutic thermal mud produced by spas of the Euganean Thermal District (Italy) is used as a treatment for arthro-rheumatic diseases. Its production involves the growth of a specific microbiota embedded in a polysaccharidic matrix. Polysaccharides (Microbial-PolySaccharides, M-PS) released in the mud by the resident microorganisms were extracted and analyzed.

View Article and Find Full Text PDF

Biocrusts provide numerous ecological functions in drylands. Recovering biocrusts via cyanobacterial inoculation recently gathered interest for ecological restoration, yet it still lacks long-term experiments to unravel biocrust community dynamics. To examine how cyanobacterial inoculants influenced local microbial community and biocrust development, we observed a 2 km (Qubqi Desert, China) inoculation experiment after 10 and 15 years, following biocrust formation.

View Article and Find Full Text PDF

An intricate set of interactions characterizes marine ecosystems. One of the most important is represented by the microbial loop, which includes the exchange of dissolved organic matter (DOM) from phototrophic organisms to heterotrophic bacteria. Here, it can be used as the major carbon and energy source.

View Article and Find Full Text PDF

Land degradation in drylands is a drawback of the combined action of climate change and human activities. New techniques have been developed to induce artificial biocrusts formation as a tool for restoration of degraded drylands, and among them soils inoculation with cyanobacteria adapted to environmental stress. Improvement of soil properties by cyanobacteria inoculation is largely related to their ability to synthesize exopolysaccharides (EPS).

View Article and Find Full Text PDF

Nowadays commercial preparations of yeast polysaccharides (PSs), in particular mannoproteins, are widely used for wine colloidal and tartrate salt stabilization. In this context, the industry has developed different processes for the isolation and purification of PSs from the cell wall of . This yeast releases limited amounts of mannoproteins in the growth medium, thus making their direct isolation from the culture broth not economically feasible.

View Article and Find Full Text PDF

The Euganean Thermal District (Italy) represents the oldest and largest thermal center in Europe, and its therapeutic mud is considered a unique product whose beneficial effects have been documented since Ancient Roman times. Mud properties depend on the heat and electrolytes of the thermal water, as well as on the bioactive molecules produced by its biotic component, mainly represented by cyanobacteria. The investigation of the healing effects of compounds produced by the Euganean cyanobacteria represents an important goal for scientific validation of Euganean mud therapies and for the discovering of new health beneficial biomolecules.

View Article and Find Full Text PDF

The extracellular polysaccharides produced by cyanobacteria have distinctive characteristics that make them promising for applications ranging from bioremediation to biomedicine. In this study, a sulfated polysaccharide produced by a marine cyanobacterial strain and named cyanoflan was characterized in terms of morphology, chemical composition, and rheological and emulsifying properties. Cyanoflan has a 71 % carbohydrate content, with 11 % of sulfated residues, while the protein account for 4 % of dry weight.

View Article and Find Full Text PDF
Article Synopsis
  • Polylactic acid (PLA) is a versatile bioplastic derived from lactic acid, known for its high melting point, mechanical strength, and transparency, but its safe disposal poses environmental challenges due to its resistance to microbial degradation.
  • A method was developed to isolate rare actinomycetes with proteolytic activity, leading to the identification of four strains capable of degrading emulsified PLA.
  • Among these, the strain SNC showed the best PLA degradation capabilities, significantly eroding the polymer and achieving a weight loss of 36% within one month under mesophilic conditions.
View Article and Find Full Text PDF

Cyanobacterial extracellular carbohydrate polymers are particularly attractive for biotechnological applications. Previously, we determined the monosaccharidic composition of the polymer of a Synechocystis ΔsigF overproducing mutant. Here, we further characterized this polymer, demonstrated that it is possible to recover it in high yields, and successfully use it for biomedical research.

View Article and Find Full Text PDF

Inoculation of soils with cyanobacteria is proposed as a sustainable biotechnological technique for restoration of degraded areas in drylands due to the important role that cyanobacteria and their exopolysaccharides (EPS) play in the environment. So far, few studies have analyzed the macromolecular and chemical characteristics of the polysaccharidic matrix in induced cyanobacterial biocrusts and the scarce existing studies have mainly focused on sandy soil textures. However, the characteristics of the cyanobacterial polysaccharidic matrix may greatly depend on soil type.

View Article and Find Full Text PDF