The intestinal microbiota is critical for mammalian immune system development and homeostasis. Sulfate-reducing bacteria (SRB) are part of the normal gut microbiota, but their increased levels may contribute to colitis development, likely in association with hydrogen sulfide (HS) production. Here, we investigated the effects of SRB in the gut immune response in germ-free mice, and in experimental colitis.
View Article and Find Full Text PDFP2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors.
View Article and Find Full Text PDFBackground: Extracellular ATP is an endogenous signaling molecule released by various cell types and under different stimuli. High concentrations of ATP released into the extracellular medium activate the P2X7 receptor in most inflammatory conditions. Here, we seek to characterize the effects of ATP in human intestinal epithelial cells and to evaluate morphological changes in these cells in the presence of ATP.
View Article and Find Full Text PDF