Publications by authors named "Ales Vancura"

IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions.

View Article and Find Full Text PDF

The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. The transcription changes triggered by DDR depend on the nature of DNA damage, activation of checkpoint kinases, and the stage of cell cycle. The transcription changes can be localized and affect only damaged DNA, but they can be also global and affect genes that are not damaged.

View Article and Find Full Text PDF

One of the key outcomes of activation of DNA replication checkpoint (DRC) or DNA damage checkpoint (DDC) is the increased synthesis of the deoxyribonucleoside triphosphates (dNTPs), which is a prerequisite for normal progression through the S phase and for effective DNA repair. We have recently shown that DDC increases aerobic metabolism and activates the electron transport chain (ETC) to elevate ATP production and dNTP synthesis by repressing transcription of histone genes, leading to globally altered chromatin architecture and increased transcription of genes encoding enzymes of tricarboxylic acid (TCA) cycle and the ETC. The aim of this study was to determine whether DRC activates ETC.

View Article and Find Full Text PDF

Heme is an essential cofactor for enzymes of the electron transport chain (ETC) and ATP synthesis in mitochondrial oxidative phosphorylation (OXPHOS). Heme also binds to and destabilizes Bach1, a transcription regulator that controls expression of several groups of genes important for glycolysis, ETC, and metastasis of cancer cells. Heme synthesis can thus affect pathways through which cells generate energy and precursors for anabolism.

View Article and Find Full Text PDF

Proliferating cells coordinate histone and DNA synthesis to maintain correct stoichiometry for chromatin assembly. Histone mRNA levels must be repressed when DNA replication is inhibited to prevent toxicity and genome instability due to free non-chromatinized histone proteins. In mammalian cells, replication stress triggers degradation of histone mRNAs, but it is unclear if this mechanism is conserved from other species.

View Article and Find Full Text PDF

Interferon-γ (IFNγ) is a pleiotropic cytokine that signals to many different cell types. IFNγ has both antitumor functions and pro-tumorigenic effects and regulates different aspects of cell physiology, including metabolism. Cancer cells undergo a complex rearrangement of metabolic pathways that allows them to satisfy the needs of increased proliferation, and many cancer cells redirect glucose metabolism from oxidative phosphorylation to aerobic glycolysis.

View Article and Find Full Text PDF

The DNA damage response (DDR) is an evolutionarily conserved process essential for cell survival. Previously, we found that decreased histone expression induces mitochondrial respiration, raising the question whether the DDR also stimulates respiration. Here, using oxygen consumption and ATP assays, RT-qPCR and ChIP-qPCR methods, and dNTP analyses, we show that DDR activation in the budding yeast , either by genetic manipulation or by growth in the presence of genotoxic chemicals, induces respiration.

View Article and Find Full Text PDF

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) serves as an energy sensor and master regulator of metabolism. In general, AMPK inhibits anabolism to minimize energy consumption and activates catabolism to increase ATP production. One of the mechanisms employed by AMPK to regulate metabolism is protein acetylation.

View Article and Find Full Text PDF

Metformin has been a frontline therapy for type 2 diabetes (T2D) for many years. Its effectiveness in T2D treatment is mostly attributed to its suppression of hepatic gluconeogenesis; however, the mechanistic aspects of metformin action remain elusive. In addition to its glucose-lowering effect, metformin possesses other pleiotropic health-promoting effects that include reduced cancer risk and tumorigenesis.

View Article and Find Full Text PDF

The proto-oncogene Bcl3 induces survival and proliferation in cancer cells; however, its function and regulation in ovarian cancer (OC) remain unknown. Here, we show that expression is increased in human OC tissues. Surprisingly, however, we found that in addition to promoting survival, proliferation, and migration of OC cells, Bcl3 promotes both constitutive and interferon-γ (IFN)-induced expression of the immune checkpoint molecule PD-L1.

View Article and Find Full Text PDF

The rationale for developing histone deacetylase (HDAC) inhibitors (HDACi) as anticancer agents was based on their ability to induce apoptosis and cell cycle arrest in cancer cells. However, while HDACi have been remarkably effective in the treatment of hematological malignancies, clinical studies with HDACi as single agents in solid cancers have been disappointing. Recent studies have shown that, in addition to inducing apoptosis in cancer cells, class I HDACi induce IκB kinase (IKK)-dependent expression of proinflammatory chemokines, such as interleukin-8 (IL8; CXCL8), resulting in the increased proliferation of tumor cells, and limiting the effectiveness of HDACi in solid tumors.

View Article and Find Full Text PDF

Phospholipase C (Plc1p) in Saccharomyces cerevisiae is required for normal degradation of repressor Mth1p and expression of the HXT genes encoding cell membrane transporters of glucose. Plc1p is also required for normal localization of glucose transporters to the cell membrane. Consequently, plc1Δ cells display histone hypoacetylation and transcriptional defects due to reduced uptake and metabolism of glucose to acetyl-CoA, a substrate for histone acetyltransferases.

View Article and Find Full Text PDF

Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria.

View Article and Find Full Text PDF

Overexpression of the pro-angiogenic chemokine IL-8 (CXCL8) is associated with a poor prognosis in several solid tumors, including epithelial ovarian cancer (EOC). Even though histone deacetylase (HDAC) inhibition has shown remarkable antitumor activity in hematological malignancies, it has been less effective in solid tumors, including EOC. Here we report results that may explain the decreased efficiency of HDAC inhibition in EOC, based on our data demonstrating that HDAC inhibition specifically induces expression of IL-8/CXCL8 in SKOV3, CAOV3, and OVCAR3 cells.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism.

View Article and Find Full Text PDF

Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Here we show that decreased expression of histones or a defect in nucleosome assembly in the yeast Saccharomyces cerevisiae results in increased mitochondrial DNA (mtDNA) copy numbers, oxygen consumption, ATP synthesis, and expression of genes encoding enzymes of the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). The metabolic shift from fermentation to respiration induced by altered chromatin structure is associated with the induction of the retrograde (RTG) pathway and requires the activity of the Hap2/3/4/5p complex as well as the transport and metabolism of pyruvate in mitochondria.

View Article and Find Full Text PDF

Cells sense and appropriately respond to the physical conditions and availability of nutrients in their environment. This sensing of the environment and consequent cellular responses are orchestrated by a multitude of signaling pathways and typically involve changes in transcription and metabolism. Recent discoveries suggest that the signaling and transcription machineries are regulated by signals which are derived from metabolism and reflect the metabolic state of the cell.

View Article and Find Full Text PDF

Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation.

View Article and Find Full Text PDF

Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive.

View Article and Find Full Text PDF

Acetyl coenzyme A (acetyl-CoA) is a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Concentration of acetyl-CoA affects histone acetylation and links intermediary metabolism and transcriptional regulation. Here we show that SNF1, the budding yeast ortholog of the mammalian AMP-activated protein kinase (AMPK), plays a role in the regulation of acetyl-CoA homeostasis and global histone acetylation.

View Article and Find Full Text PDF

Phospholipase C (Plc1p) is required for the initial step of inositol polyphosphate (InsP) synthesis, and yeast cells with deletion of the PLC1 gene are completely devoid of any InsPs and display aberrations in transcriptional regulation. Here we show that Plc1p is required for a normal level of histone acetylation; plc1Δ cells that do not synthesize any InsPs display decreased acetylation of bulk histones and global hypoacetylation of chromatin histones. In accordance with the role of Plc1p in supporting histone acetylation, plc1Δ mutation is synthetically lethal with mutations in several subunits of SAGA and NuA4 histone acetyltransferase (HAT) complexes.

View Article and Find Full Text PDF

Histone acetylation depends on intermediary metabolism for supplying acetyl-CoA in the nucleocytosolic compartment. However, because nucleocytosolic acetyl-CoA is also used for de novo synthesis of fatty acids, histone acetylation and synthesis of fatty acids compete for the same acetyl-CoA pool. The first and rate-limiting reaction in de novo synthesis of fatty acids is carboxylation of acetyl-CoA to form malonyl-CoA, catalyzed by acetyl-CoA carboxylase.

View Article and Find Full Text PDF