Publications by authors named "Ales Styskalik"

Valuable alkyl lactates can be obtained from (waste) glycerol, through a two-step process that entails (i) the oxidation of glycerol to dihydroxyacetone (DHA) catalyzed by support Au nanoparticles and (ii) a rearrangement of DHA with an alcohol effectively catalyzed by Sn-based heterogeneous catalysts. To solve selectivity and processing issues we propose to run the process as a cascade reaction, in one step, and with a single bifunctional catalyst. Tackling the challenge associated with the preparation of such bifunctional catalysts, here, an aerosol-assisted sol-gel route is exploited.

View Article and Find Full Text PDF

Porous aluminosilicates are functional materials of paramount importance as Lewis acid catalysts in the synthetic industry, yet the participating aluminum species remain poorly studied. Herein, a series of model aluminosilicate networks containing [L-AlO] (L = THF, EtN, pyridine, triethylphosphine oxide (TEPO)) and [AlO] centers were prepared through nonhydrolytic sol-gel condensation reactions of the spherosilicate building block (MeSn)SiO with L-AlX (X = Cl, Me, Et) and [MeN] [AlCl] compounds in THF or toluene. The substoichiometric dosage of the Al precursors ensured complete condensation and uniform incorporation, with the bulky spherosilicate forcing a separation between neighboring aluminum centers.

View Article and Find Full Text PDF

Nowadays, the production of acetaldehyde heavily relies on the petroleum industry. Developing new catalysts for the ethanol dehydrogenation process that could sustainably substitute current acetaldehyde production methods is highly desired. Among the ethanol dehydrogenation catalysts, copper-based materials have been intensively studied.

View Article and Find Full Text PDF

Borane cluster-based porous covalent networks, named activated borane (), were prepared by cothermolysis of decaborane(14) (-BH) and selected hydrocarbons (toluene, cyclohexane, ; and -hexane, ) under anaerobic conditions. These amorphous solid powders exhibit different textural and Lewis acid (LA) properties that vary depending on the nature of the constituent organic linker. For , its LA strength even approaches that of the commonly used molecular LA, B(CF).

View Article and Find Full Text PDF

In this work, we demonstrate that amorphous and porous molybdenum silicate microspheres are highly active catalysts for heterogeneous propylene metathesis. Homogeneous molybdenum silicate microspheres and aluminum-doped molybdenum silicate microspheres were synthesized via a nonaqueous condensation of a hybrid molybdenum biphenyldicarboxylate-based precursor solution with (3-aminopropyl)triethoxysilane. The as-prepared hybrid metallosilicate products were calcined at 500 °C to obtain amorphous and porous molybdenum silicate and aluminum-doped molybdenum silicate microspheres with highly dispersed molybdate species inserted into the silicate matrix.

View Article and Find Full Text PDF

Non-oxidative ethanol dehydrogenation is a renewable source of acetaldehyde and hydrogen. The reaction is often catalyzed by supported copper catalysts with high selectivity. The activity and long-term stability depend on many factors, including particle size, choice of support, doping, etc.

View Article and Find Full Text PDF

The preparation of copper-based heterogeneous catalysts dedicated to the hydrogenation of CO to methanol typically relies on multi-step procedures carried out in batch. These steps are precisely tailored to introduce the active phase (Cu) and the promoters (e. g.

View Article and Find Full Text PDF

The condensation reaction between PhSi(OC(O)CH) and OP(OSiMe) leads to elimination of CHC(O)OSiMe and the formation of the new silicophosphate cage molecule PhSiPO (1) with an adamantane-like core possessing four terminal P═O moieties and six O-SiPh-O bridging groups. Compound 1 was further reacted with the Lewis acid B(CF). We observed adduct formation by coordination through the P═O→B bonds and isolated and structurally characterized two new molecules.

View Article and Find Full Text PDF