Both flash vacuum thermolysis (FVT) and matrix photolysis generate 2-diazomethylpyrazine (22) from 1,2,3-triazolo[1,5-a]pyrazine (24). FVT of 4-azidopyridine (18) as well as of 24 or 2-(5-tetrazolyl)pyrazine (23) affords the products expected from the nitrene, i.e.
View Article and Find Full Text PDFTetrazolo[1,5-a]pyridines/2-azidopyridines 1 undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes 3, which react with alcohols to afford 2-alkoxy-1H-1,3-diazepines 4 (5), with secondary amines to 2-dialkylamino-5H-1,3-diazepines 16, sometimes via isolable 2-dialkylamino-1H-1,3-diazepines 15, and with water to 1,3-diazepin-2-ones 19. The latter are also obtained by elimination of isobutene or propene from 2-tert-butoxy- or 2-isopropoxy-1H-1,3-diazepines 4 or 5. 1,3-Diazepin-2-one 22B and 1,3-diazepin-4-one 24 were obtained from hydrolysis of the corresponding 4-chlorodiazepines.
View Article and Find Full Text PDFSeveral tetrazolo[1,5-a]pyridines/2-azidopyridines undergo photochemical nitrogen elimination and ring expansion to 1,3-diazacyclohepta-1,2,4,6-tetraenes, as well as ring cleavage to cyanovinylketenimines, in low temperature Ar matrices. 6,8-Dichlorotetrazolo[1,5-a]pyridine/2-azido-3,5-dichloropridine undergoes ready exchange of the chlorine in position 8 (3) with ROH/RONa. 8-Chloro-6-trifluoromethyltetrazolo[1,5-a]pyridine undergoes solvolysis of the CF(3) group to afford 8-chloro-6-methoxycarbonyltetrazolo[1,5-a]pyridine.
View Article and Find Full Text PDFArgon matrix photolysis of tetrazolo[1,5-a]quinoline 8 and tetrazolo[5,1-a]isoquinoline 7 causes nitrogen elimination and ring expansion to 1,3-diazabenzo[d]cyclohepta-1,2,4,6-tetraene 13. The photolysis of tetrazolo[5,1-a]isoquinoline 7 also causes ring opening to o-cyanophenylketenimine 22. Mechanisms of ring opening of heteroarylnitrenes are discussed.
View Article and Find Full Text PDF