Liquid crystals self-assemble on nanopatterned alignment layers into purely soft matter metasurfaces sensitive to external stimuli and imparting tailored spatial modulations to transmitted light wavefronts. Upon fine optimization, they are capable of efficient light deflection by virtue of anomalous refraction into a dominating transmission diffraction order. To expand the spectral range and acquire additional functionality, we put forward the double-sided metasurface design based on the liquid crystal alignment by a pair of complementing patterned substrates.
View Article and Find Full Text PDFSelf-assembling of liquid-crystal metasurfaces on polymer layers patterned by a focused ion beam manifests itself in distinctly colored optical transmission, as light from certain spectral bands is efficiently diffracted by the periodic liquid crystal modulations. We explore the metasurface electro-optics by applying voltage across the liquid crystal to straighten its director distribution and reroute the diffracted light into the direct transmission. We show that the characteristic times of switching from the diffracting to the transmitting state can be decreased down to a millisecond by increasing the driving voltage up to 6-8 V, while the main part of the relaxation back into the periodically deformed diffracting state occurs within about a few milliseconds, i.
View Article and Find Full Text PDFThe alignment of liquid crystals by surfaces is crucial for applications. It determines the director configuration in the bulk, its stability against defects and electro-optical switching scenarios. The conventional planar alignment of rubbed polymer layers can be locally flipped to vertical by irradiation with a focused ion beam on a scale of tens of nanometers.
View Article and Find Full Text PDFFormation of photonic liquid crystal metasurfaces on rubbed polyimide substrates patterned by focused ion beam is demonstrated. Modulation of the surface anchoring conditions with periods from 1 to 6 micrometers gives rise to periodic deformation of the nematic liquid crystal director field. The exact periodicity is confirmed by the light diffraction measurements.
View Article and Find Full Text PDF