Publications by authors named "Alena Jin"

Proanthocyanidins (PAC) are a highly consumed class of flavonoids and their consumption has been linked to beneficial effects in type 2 diabetes. However, limited gastrointestinal absorption occurs due to the polymeric structure of PAC. We hypothesized that hydrolysis of the PAC polymer would increase bioavailability, thus leading to enhanced beneficial effects on glucose homeostasis and pancreatic β-cell function.

View Article and Find Full Text PDF

Pulses, including dried peas, are nutrient- and fibre-rich foods that improve glucose control in diabetic subjects compared with other fibre sources. We hypothesized feeding cooked pea seed coats to insulin-resistant rats would improve glucose tolerance by modifying gut responses to glucose and reducing stress on pancreatic islets. Glucose intolerance induced in male Sprague-Dawley rats with high-fat diet (HFD; 10% cellulose as fibre) was followed by 3 weeks of HFD with fibre (10%) provided by cellulose, raw-pea seed coat (RP), or cooked-pea seed coat (CP).

View Article and Find Full Text PDF

Saskatoons (Amelanchier alnifolia Nutt.) are small fruits that contain substantial quantities of flavonoids. To further characterize and understand the role of these flavonoids during fruit development, anthocyanins, flavonols, and proanthocyanidins were identified, quantified, and localized over development in cultivars that produce blue-purple or white fruit at maturity.

View Article and Find Full Text PDF

Background: Proanthocyanidins (PAs) accumulate in the seeds, fruits and leaves of various plant species including the seed coats of pea (Pisum sativum), an important food crop. PAs have been implicated in human health, but molecular and biochemical characterization of pea PA biosynthesis has not been established to date, and detailed pea PA chemical composition has not been extensively studied.

Results: PAs were localized to the ground parenchyma and epidermal cells of pea seed coats.

View Article and Find Full Text PDF

Gibberellins (GAs) are key modulators of plant growth and development. PsGA3ox1 (LE) encodes a GA 3β-hydroxylase that catalyzes the conversion of GA20 to biologically active GA1. To further clarify the role of GA3ox expression during pea (Pisum sativum) plant growth and development, we generated transgenic pea lines (in a lele background) with cauliflower mosaic virus-35S-driven expression of PsGA3ox1 (LE).

View Article and Find Full Text PDF

The present study compared the effects of feeding uncooked pea fractions (embryo v. seed coat) on glucose homeostasis in glucose-intolerant rats and examined potential mechanisms influencing glucose homeostasis. Rats were made glucose intolerant by high-fat feeding, after which diets containing both high-fat and pea fractions were fed for 4 weeks.

View Article and Find Full Text PDF

Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design.

View Article and Find Full Text PDF

Previous work suggests that gibberellins (GAs) play an important role in early seed development. To more fully understand the roles of GAs throughout seed development, tissue-specific transcription profiles of GA metabolism genes and quantitative profiles of key GAs were determined in pea (Pisum sativum) seeds during the seed-filling development period (8-20 d after anthesis [DAA]). These profiles were correlated with seed photoassimilate acquisition and storage as well as morphological development.

View Article and Find Full Text PDF