Publications by authors named "Alena Cristina Jaime-Ramirez"

Because most patients with multiple myeloma (MM) develop resistance to current regimens, novel approaches are needed. Genetically modified, replication-competent oncolytic viruses exhibit high tropism for tumor cells regardless of cancer stage and prior treatment. Receptors of oncolytic herpes simplex virus 1 (oHSV-1), NECTIN-1, and HVEM are expressed on MM cells, prompting us to investigate the use of oHSV-1 against MM.

View Article and Find Full Text PDF

Purpose: To examine the effect of oncolytic herpes simplex virus (oHSV) on NOTCH signaling in central nervous system tumors.

Experimental Design: Bioluminescence imaging, reverse phase protein array proteomics, fluorescence microscopy, reporter assays, and molecular biology approaches were used to evaluate NOTCH signaling. Orthotopic glioma-mouse models were utilized to evaluate effects .

View Article and Find Full Text PDF

Background: Hyperactivation of the RAS-RAF-MEK-ERK signaling pathway is exploited by glioma cells to promote their growth and evade apoptosis. MEK activation in tumor cells can increase replication of ICP34.5-deleted herpes simplex virus type 1 (HSV-1), but paradoxically its activation in tumor-associated macrophages promotes a pro-inflammatory signaling that can inhibit virus replication and propagation.

View Article and Find Full Text PDF

Integrin β1 receptor, expressed on the surface of tumor cells and macrophages in the tumor microenvironment (TME), has been implicated in both tumor progression and resistance to multiple modalities of therapy. OS2966 is the first clinical-ready humanized monoclonal antibody to block integrin β1 and was recently orphan designated by the FDA Office of Orphan Products Development. Here, we tested therapeutic potential of OS2966-mediated integrin β1 blockade to enhance the efficacy of oncolytic herpes simplex virus-1 (oHSV) through evaluation of virus replication, tumor cell killing efficiency, effect on the antiviral signaling pathway, co-culture assays of oHSV-infected cells with macrophages, and bioluminescence imaging on mammary fat pad triple-negative breast cancer xenograft and subcutaneous and intracranial glioma xenografts.

View Article and Find Full Text PDF

Engineered oncolytic viruses are used clinically to destroy cancer cells and have the ability to boost anticancer immunity. Phosphatase and tensin homolog deleted on chromosome 10 loss is common across a broad range of malignancies, and is implicated in immune escape. The N-terminally extended isoform, phosphatase and tensin homolog deleted on chromosome 10 alpha (PTENα), regulates cellular functions including protein kinase B signaling and mitochondrial adenosine triphosphate production.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate immune effector cells that play a crucial role in immune surveillance and the destruction of cancer cells. NK cells express a low-affinity receptor for the Fc or constant region of immunoglobulin G (FcγRIIIa) and multiple cytokine receptors that respond to antibody-coated targets and cytokines in the tumor microenvironment. In the present work, microarray gene expression analysis revealed that the IL-21 receptor (IL-21R) was strongly upregulated following FcR stimulation.

View Article and Find Full Text PDF

Targeted inhibition of oncogenic miRNA-21 has been proposed to treat glioblastoma by rescuing tumor suppressors, PTEN and PDCD4. However, systemic delivery of anti-miR-21 sequences requires a robust and efficient delivery platform to successfully inhibit this druggable target. Three-way-junction (3WJ)-based RNA nanoparticles (RNP), artificially derived from pRNA of bacteriophage phi29 DNA packaging motor, was recently shown to target glioblastoma.

View Article and Find Full Text PDF

Background: Malignant gliomas (glioblastomas; GBMs) are extremely aggressive and have a median survival of approximately 15 months. Current treatment modalities, which include surgical resection, radiation and chemotherapy, have done little to prolong the lives of GBM patients. Chondroitin sulfate proteoglycans (CSPG) are critical for cell-cell and cell-extracellular matrix (ECM) interactions and are implicated in glioma growth and invasion.

View Article and Find Full Text PDF

Purpose: Both the proteasome inhibitor bortezomib and an oncolytic herpes simplex virus-1 (oHSV)-expressing GM-CSF are currently FDA approved. Although proteasome blockade can increase oHSV replication, immunologic consequences, and consequent immunotherapy potential are unknown. In this study, we investigated the impact of bortezomib combined with oHSV on tumor cell death and sensitivity to natural killer (NK) cell immunotherapy.

View Article and Find Full Text PDF

The ubiquitin-proteasome signaling pathway is critical for cell cycle regulation and neoplastic growth. Proteasome inhibition can activate apoptotic pathways. Bortezomib, a selective proteasome inhibitor, has anti-melanoma activity.

View Article and Find Full Text PDF

Purpose: Alternative strategies to EGFR blockage by mAbs is necessary to improve the efficacy of therapy in patients with locally advanced or metastatic pancreatic cancer. One such strategy includes the use of NK cells to clear cetuximab-coated tumor cells, as need for novel therapeutic approaches to enhance the efficacy of cetuximab is evident. We show that IL-21 enhances NK cell-mediated effector functions against cetuximab-coated pancreatic tumor cells irrespective of KRAS mutation status.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma is largely incurable, with most patients facing high mortality rates within five years after diagnosis, prompting the search for effective therapies.
  • Reolysin, a viral oncolytic therapy derived from human reovirus, shows promise in targeting multiple myeloma cells, but previous trials revealed limited efficacy as the virus did not replicate significantly within these cells.
  • Research indicates that enhancing the expression of the viral receptor JAM-1 through histone deacetylase inhibitors (HDACi) can improve the effectiveness of Reolysin, suggesting a potential combined therapeutic strategy for better treatment outcomes in multiple myeloma.
View Article and Find Full Text PDF

Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2.

View Article and Find Full Text PDF

Purpose: Oncolytic herpes simplex viruses (oHSV) represent a promising therapy for glioblastoma (GBM), but their clinical success has been limited. Early innate immune responses to viral infection reduce oHSV replication, tumor destruction, and efficacy. Here, we characterized the antiviral effects of macrophages and microglia on viral therapy for GBM.

View Article and Find Full Text PDF

Metastatic melanoma is the most aggressive form of this cancer. It is important to understand factors that increase or decrease metastatic activity in order to more effectively research and implement treatments for melanoma. Increased cell invasion through the extracellular matrix is required for metastasis and is enhanced by matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF

The 2-year survival rate of patients with breast cancer brain metastases is less than 2%. Treatment options for breast cancer brain metastases are limited, and there is an unmet need to identify novel therapies for this disease. Brain angiogenesis inhibitor 1 (BAI1) is a GPCR involved in tumor angiogenesis, invasion, phagocytosis, and synaptogenesis.

View Article and Find Full Text PDF

Background: Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common cancer worldwide. Greater than 90% of SCCHN of the oropharynx overexpress the epidermal growth factor receptor (EGFR or HER1). Cetuximab (Erbitux-TM) is a humanized anti-HER1 monoclonal antibody (mAb) that binds to HER1 overexpressing tumor cells.

View Article and Find Full Text PDF

Pancreatic cancer is a devastating disease, with a median survival of around 6 months for patients with stage IV disease. The epidermal growth factor receptor (EGFR, or HER1) belongs to the erbB receptor tyrosine kinase family. HER1-mediated cell signaling has been shown to play a major role in promoting tumor proliferation, angiogenesis, metastasis, and evasion of apoptosis.

View Article and Find Full Text PDF

Interferon-alpha (IFN-α) is an immunomodulatory cytokine that is used clinically for the treatment of melanoma in the adjuvant setting. The cellular actions of IFN-α are regulated by the suppressors of cytokine signaling (SOCS) family of proteins. We hypothesized that the anti-tumor activity of exogenous IFN-α would be enhanced in SOCS1-deficient mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how combining IL-12, a cytokine that boosts immune responses, with a specific antibody (mAb 4D5) enhances the anti-tumor effects against HER2-positive colon cancer in mice.
  • Results showed that this combination therapy led to significant cancer growth suppression and was linked to increased levels of IFN-γ, a critical immune-signaling molecule.
  • Further analysis indicated that the anti-tumor effects were primarily mediated by NK cells, suggesting that using immune-boosting cytokines alongside therapeutic antibodies could improve cancer treatments.
View Article and Find Full Text PDF