Genomic selection (GS) uses associations between markers and phenotypes to predict the breeding values of individuals. It can be applied early in the breeding cycle to reduce the cross-to-cross generation interval and thereby increase genetic gain per unit of time. The development of cost-effective, high-throughput genotyping platforms has revolutionized plant breeding programs by enabling the implementation of GS at the scale required to achieve impact.
View Article and Find Full Text PDFIncreasing dry matter yield (DMY) is the most important objective in perennial ryegrass breeding programs. Current yield assessment methods like cutting are time-consuming and destructive, non-destructive measures such as scoring yield on single plants by visual inspection may be subjective. These assessments involve multiple measurements and selection procedures across seasons and years to evaluate biomass yield repeatedly.
View Article and Find Full Text PDFWe present a simple and effective high-throughput experimental platform for simultaneous and continuous monitoring of water relations in the soil-plant-atmosphere continuum of numerous plants under dynamic environmental conditions. This system provides a simultaneously measured, detailed physiological response profile for each plant in the array, over time periods ranging from a few minutes to the entire growing season, under normal, stress and recovery conditions and at any phenological stage. Three probes for each pot in the array and a specially designed algorithm enable detailed water-relations characterization of whole-plant transpiration, biomass gain, stomatal conductance and root flux.
View Article and Find Full Text PDFVacuolar water movement is largely controlled by membrane channels called tonoplast-intrinsic aquaporins (TIP-AQPs). Some TIP-AQP genes, such as TIP2;2 and TIP1;1, are up-regulated upon exposure to biotic stress. Moreover, TIP1;1 transcript levels are higher in leaves of a tomato (Solanum lycopersicum) line resistant to Tomato yellow leaf curl virus (TYLCV) than in those of a susceptible line with a similar genetic background.
View Article and Find Full Text PDFWater scarcity is a critical limitation for agricultural systems. Two different water management strategies have evolved in plants: an isohydric strategy and an anisohydric strategy. Isohydric plants maintain a constant midday leaf water potential (Ψleaf) when water is abundant, as well as under drought conditions, by reducing stomatal conductance as necessary to limit transpiration.
View Article and Find Full Text PDF