Biochem Biophys Res Commun
November 2024
The native conformation of a protein plays a decisive role in ensuring its functionality. It is established that the spatial structure of proteins may exhibit a greater degree of conservation than the corresponding amino acid sequences. This study aims to clarify structural distinctions between homologous and non-homologous proteins with identical topology.
View Article and Find Full Text PDFIn this paper, we propose and use a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure using external force actions. A molecular dynamics manipulator (MD manipulator) is a controlled MDS type. As an example, the applicability of the developed algorithm for assembling peptide nanotubes (PNT) from linear phenylalanine (F or Phe) chains of different chirality is presented.
View Article and Find Full Text PDFIn this study we consider the features of spatial-structure formation in proteins and their application in bioengineering. Methods for the quantitative assessment of the chirality of regular helical and irregular structures of proteins are presented. The features of self-assembly of phenylalanine (F) into peptide nanotubes (PNT), which form helices of different chirality, are also analyzed.
View Article and Find Full Text PDFThe chirality quantification is of great importance in structural biology, where the differences in proteins twisting can provide essentially different physiological effects. However, this aspect of the chirality is still poorly studied for helix-like supramolecular structures. In this work, a method for chirality quantification based on the calculation of scalar triple products of dipole moments is suggested.
View Article and Find Full Text PDF