Optical coherence tomography (OCT) is a non-invasive imaging technique widely used in ophthalmology for visualizing retinal layers, aiding in the early detection and monitoring of retinal diseases. OCT is useful for detecting diseases such as age-related macular degeneration (AMD) and diabetic macular edema (DME), which affect millions of people globally. Over the past decade, the area of application of artificial intelligence (AI), particularly deep learning (DL), has significantly increased.
View Article and Find Full Text PDFElectroretinography (ERG) is a non-invasive method of assessing retinal function by recording the retina's response to a brief flash of light. This study focused on optimizing the ERG waveform signal classification by utilizing Short-Time Fourier Transform (STFT) spectrogram preprocessing with a machine learning (ML) decision system. Several window functions of different sizes and window overlaps were compared to enhance feature extraction concerning specific ML algorithms.
View Article and Find Full Text PDFVisual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a non-invasive imaging technique with extensive clinical applications in ophthalmology. OCT enables the visualization of the retinal layers, playing a vital role in the early detection and monitoring of retinal diseases. OCT uses the principle of light wave interference to create detailed images of the retinal microstructures, making it a valuable tool for diagnosing ocular conditions.
View Article and Find Full Text PDFThe electroretinogram (ERG) is a clinical test that records the retina's electrical response to light. Analysis of the ERG signal offers a promising way to study different retinal diseases and disorders. Machine learning-based methods are expected to play a pivotal role in achieving the goals of retinal diagnostics and treatment control.
View Article and Find Full Text PDFThe continuous advancements in healthcare technology have empowered the discovery, diagnosis, and prediction of diseases, revolutionizing the field. Artificial intelligence (AI) is expected to play a pivotal role in achieving the goals of precision medicine, particularly in disease prevention, detection, and personalized treatment. This study aims to determine the optimal combination of the mother wavelet and AI model for the analysis of pediatric electroretinogram (ERG) signals.
View Article and Find Full Text PDFBackground: The electroretinogram is a clinical test used to assess the function of the photoreceptors and retinal circuits of various cells in the eye, with the recorded waveform being the result of the summated response of neural generators across the retina.
Methods: The present investigation involved an analysis of the electroretinogram waveform in both the time and time-frequency domains through the utilization of the discrete wavelet transform and continuous wavelet transform techniques. The primary aim of this study was to monitor and evaluate the effects of treatment in a New Zealand rabbit model of endophthalmitis via electroretinogram waveform analysis and to compare these with normal human electroretinograms.