The use of animal experiments can be minimized with computational models capable of reflecting the simulated environments. One such environment is intestinal fluid and the colloids formed in it. In this study we used molecular dynamics simulations to investigate solubilization patterns for three model drugs (carvedilol, felodipine and probucol) in dog intestinal fluid, a lipid-based formulation, and a mixture of both.
View Article and Find Full Text PDFTheoretical predictions of the solubilizing capacity of micelles and vesicles present in intestinal fluid are important for the development of new delivery techniques and bioavailability improvement. A balance between accuracy and computational cost is a key factor for an extensive study of numerous compounds in diverse environments. In this study, we aimed to determine an optimal molecular dynamics (MD) protocol to evaluate small-molecule interactions with micelles composed of bile salts and phospholipids.
View Article and Find Full Text PDFOur previous work shows that β-lactoglobulin-stabilized amorphous solid dispersion (ASD) loaded with 70 % indomethacin remains stable for more than 12 months. The stability is probably due to hydrogen bond networks spread throughout the ASD, facilitated by the indomethacin which has both hydrogen donors and acceptors. To investigate the stabilization mechanisms further, here we tested five other drug molecules, including two without any hydrogen bond donors.
View Article and Find Full Text PDFProtein-based amorphous solid dispersions (ASDs) have emerged as a promising approach for enhancing solubility in comparison to crystalline drugs. The dissolution behavior of protein-based amorphous solid dispersions (ASDs) was investigated in various pH media. ASDs of four poorly soluble model drugs with acidic (furosemide and indomethacin), basic (carvedilol), and neutral (celecoxib) properties were prepared by spray drying at 30 wt % drug loading with the protein β-lactoglobulin (BLG).
View Article and Find Full Text PDFLipid-based formulations (LBFs) are used by the pharmaceutical industry in oral delivery systems for both poorly water-soluble drugs and biologics. Digestibility is key for the performance of LBFs and in vitro lipolysis is commonly used to compare the digestibility of LBFs. Results from in vitro lipolysis experiments depend highly on the experimental conditions and formulation characteristics, such as droplet size (which defines the surface area available for digestion) and interfacial structure.
View Article and Find Full Text PDFProteins, and in particular whey proteins, have recently been introduced as a promising excipient class for stabilizing amorphous solid dispersions. However, despite the efficacy of the approach, the molecular mechanisms behind the stabilization of the drug in the amorphous form are not yet understood. To investigate these, we used experimental and computational techniques to study the impact of drug loading on the stability of protein-stabilized amorphous formulations.
View Article and Find Full Text PDFGlycocalyx has a great impact on the accessibility of the endothelial cell membranes. Although the specific interactions play a crucial role in cross-membrane solute transport, nonspecific interactions cannot be neglected. In this work, we used computational modeling to quantify the nonspecific interactions that control the distribution of nanosized solutes across the endothelial glycocalyx.
View Article and Find Full Text PDFCaveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking.
View Article and Find Full Text PDFRobust and reliable in vivo performance of medicines based on amorphous solid dispersions (ASDs) depend on maintenance of physical stability and efficient supersaturation. However, molecular drivers of these two kinetic processes are poorly understood. Here we used molecular dynamics (MD) simulations coupled with experimental assessments to explore supersaturation, nucleation, and crystal growth.
View Article and Find Full Text PDFMolecular transport mechanisms of poorly soluble hydrophobic drug compounds to lipid membranes were investigated using molecular dynamics (MD) simulations. The model compound danazol was used to investigate the mechanism(s) by which bile micelles delivered it to the membrane. The interactions between lipid membrane and pure drug aggregates-in the form of amorphous aggregates and nanocrystals-were also studied.
View Article and Find Full Text PDFIn this review we will discuss how computational methods, and in particular classical molecular dynamics simulations, can be used to calculate solubility of pharmaceutically relevant molecules and systems. To the extent possible, we focus on the non-technical details of these calculations, and try to show also the added value of a more thorough and detailed understanding of the solubilization process obtained by using computational simulations. Although the main focus is on classical molecular dynamics simulations, we also provide the reader with some insights into other computational techniques, such as the COSMO-method, and also discuss Flory-Huggins theory and solubility parameters.
View Article and Find Full Text PDFThe endothelial glycocalyx (EG), a sugar-rich layer that lines the luminal surface of blood vessels, is an important constituent of the vascular system. Although the chemical composition of the EG is fairly well known, there is no consensus regarding its ultrastructure. While previous experiments probed the properties of the layer at the continuum level, they did not provide sufficient insight into its molecular organisation.
View Article and Find Full Text PDFWe study solute transport in a microfluidic channel, where the walls hold an array of tilted rigid nanopillars. By solving numerically the flow equations in the channel, we show that a combination of hydrodynamic effects with excluded volume interactions between the solute particles and the pillars leads to a hydrodynamic lift effect, which varies with the particle size, and depends in a strongly nonlinear fashion on the flow rate. We show that the lift force can be sufficiently strong to drive the solute accumulation or removal from the pillar region and can be switched to the opposite direction by variation of the shear rate or driving pressure.
View Article and Find Full Text PDF