Publications by authors named "Aleksanteri Petsalo"

There is a lack of information about the changes in drug pharmacokinetics and cytochrome P450 (CYP) metabolism after bariatric surgery. Here, we investigated the effects of laparoscopic Roux-en-Y gastric bypass (LRYGB) surgery on pharmacokinetics of nine drugs given simultaneously which may reveal changes in the activities of the main CYPs. Eight obese subjects undergoing LRYGB received an oral cocktail containing nine drugs, substrates of various CYPs: melatonin (CYP1A2), nicotine (CYP2A6), bupropion (CYP2B6), repaglinide (CYP2C8), losartan (CYP2C9), omeprazole (CYP2C19/CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A).

View Article and Find Full Text PDF

l-Type amino acid transporter 1 (LAT1) is a sodium-independent exchanger transporting large neural amino acids and several amino-acid mimicking drugs across the cell membranes. LAT1 is highly expressed at the blood brain barrier (BBB) and in numerous cancer cells and is therefore a potential drug target. However, structural features affecting the ability to bind to LAT1 and the cellular translocation by LAT1 are unclear.

View Article and Find Full Text PDF

Intestinal and hepatic glucuronidation by the UDP-glucuronosyltransferases (UGTs) greatly affect the bioavailability of phenolic compounds. UGT1A10 catalyzes glucuronidation reactions in the intestine, but not in the liver. Here, our aim was to develop selective, fluorescent substrates to easily elucidate UGT1A10 function.

View Article and Find Full Text PDF

The most common solid tumors show intrinsic multidrug resistance (MDR) or inevitably acquire such when treated with anticancer drugs. In this work, we describe the discovery of a peripherally restricted, potent, competitive NMDA receptor antagonist 1l by a structure-activity study of the broad-acting ionotropic glutamate receptor antagonist 1a. Subsequently, we demonstrate that 1l augments the cytotoxic action of sorafenib in murine hepatocellular carcinoma cells.

View Article and Find Full Text PDF

Specific diagnostic markers are the key to effective diagnosis and treatment of inborn errors of metabolism (IEM). Untargeted metabolomics allows for the identification of potential novel diagnostic biomarkers. Current separation techniques coupled to high-resolution mass spectrometry provide a powerful tool for structural elucidation of unknown compounds in complex biological matrices.

View Article and Find Full Text PDF

L-type amino acid transporter 1 (LAT1) is selectively expressed in the blood-brain barrier (BBB) and brain parenchyma. This transporter can facilitate brain delivery of neuroprotective agents and additionally give opportunity to minimize systemic exposure. Here, we investigated structure-pharmacokinetics relationship of five newly synthesized LAT1-utilizing prodrugs of the cyclooxygenase inhibitor, ketoprofen, in order to identify beneficial structural features of prodrugs to achieve both targeted brain delivery and low peripheral distribution of the parent drug.

View Article and Find Full Text PDF

Cocktail phenotyping using specific probe drugs for cytochrome P450 (CYP) enzymes provides information on the real-time activity of multiple CYPs. We investigated different sample preparation techniques and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with simple protein precipitation for the analysis of nine CYP probe drugs and their metabolites in human serum and urine. Specific CYP probe drugs (melatonin, CYP1A2; nicotine, CYP2A6; bupropion, CYP2B6; repaglinide, CYP2C8; losartan, CYP2C9; omeprazole, CYP2C19 and CYP3A4; dextromethorphan, CYP2D6; chlorzoxazone, CYP2E; midazolam, CYP3A4) and their main metabolites, with the exception of 3'-hydroxyrepaglinide, were quantified in human serum and urine using the developed LC-MS/MS method.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes are anticipated as important surrogates for primary human hepatocytes in applications ranging from basic research to drug discovery and regenerative medicine. Although methods for differentiating hepatocyte-like cells (HLCs) from hiPSCs have developed remarkably, the limited yield of fully functional HLCs is still a major obstacle to their utility. A three-dimensional (3D) culture environment could improve the in vitro hepatic maturation of HLCs.

View Article and Find Full Text PDF

The human intestinal Caco-2 cell line has been extensively used as a model of small intestinal absorption but it lacks expression and function of cytochrome P450 enzymes, particularly CYP3A4 and CYP2C9, which are normally expressed in the intestinal epithelium. In order to increase the expression and activity of CYP isozymes in these cells, we created 2 novel Caco-2 sublines expressing chimeric constitutive androstane or pregnane X receptors and characterized these cells for their metabolic and absorption properties. In spite of elevated mRNA expression of transporters and differentiation markers, the permeation properties of the modified cell lines did not significantly differ from those of the wild-type cells.

View Article and Find Full Text PDF

There are species-related differences in the toxicity of pyrrolizidine alkaloids (PAs) partly attributable to the hepatic metabolism of these alkaloids. In this study, the metabolism of lasiocarpine, a potent hepatotoxic and carcinogenic food contaminant, was examined in vitro with human, pig, rat, mouse, rabbit, and sheep liver microsomes. A total of 12 metabolites (M1-M12) were detected with the human liver microsomes, of which M1, M2, M4, and M6 were unstable in the presence of reduced glutathione (GSH).

View Article and Find Full Text PDF

In humans, the metabolic bioactivation of pyrrolizidine alkaloids (PAs) is mediated mainly by cytochrome P450 3A4 (CYP3A4) via the hydroxylation of their necine bases at C3 or C8 of heliotridine- and retronecine-type PAs or at the N atom of the methyl substituent of otonecine-type PAs. However, no attempts have been made to identify which C atom is the most favorable site for hydroxylation in silico. Here, in order to determine the site of hydroxylation that eventually leads to the formation of the toxic metabolites produced from lasiocarpine, retrorsine, and senkirkin, we utilized the ligand-based electrophilic Fukui function f(-)(r) and hydrogen-bond dissociation energies (BDEs) as well as structure-based molecular docking.

View Article and Find Full Text PDF

The glutamatergic neurotransmitter system is involved in important neurophysiological processes and thus constitutes a promising target for the treatment of neurological diseases. The two ionotropic glutamate receptor agonists kainic acid (KA) and dihydrokainic acid (DHK) have been used as research tools in various in vivo central nervous system disease models in rodents, as well as being templates in the design of novel ligands affecting the glutamatergic system. Both molecules are highly polar but yet capable of crossing the blood-brain barrier (BBB).

View Article and Find Full Text PDF

Ganciclovir (GCV) is an essential part of the Herpes simplex virus thymidine kinase (HSV-tk) gene therapy of malignant gliomas. The purpose of this study was to investigate the brain pharmacokinetics and tumor uptake of GCV in the BT4C rat glioma model. GCV's brain and tumor uptakes were investigated by in vivo microdialysis in rats with orthotopic BT4C glioma.

View Article and Find Full Text PDF

Pyrrolizidine alkaloids (PAs) such as retrorsine are common food contaminants that are known to be bioactivated by cytochrome P450 enzymes to putative hepatotoxic, genotoxic, and carcinogenic metabolites known as dehydropyrrolizidine alkaloids (DHPs). We compared how both electrochemical (EC) and human liver microsomal (HLM) oxidation of retrorsine could produce short-lived intermediate metabolites; we also characterized a toxicologically important metabolite, (3H-pyrrolizin-7-yl)methanol. The EC cell was coupled online or offline to a liquid chromatograph/mass spectrometer (LC/MS), whereas the HLM oxidation was performed in 100 mM potassium phosphate (pH 7.

View Article and Find Full Text PDF

Purpose: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine.

Methods: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry.

View Article and Find Full Text PDF

The preclinical profiles of two most potent compounds of our recently published cycloalkane[d]isoxazole pharmacophore-based androgen receptor (AR) modulators, FL442 (4-(3a,4,5,6,7,7a-hexahydro-benzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile) and its nitro analog FL425 (3-(4-nitro-3-(trifluoromethyl)phenyl)-3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazole), were explored to evaluate their druggability for the treatment of AR dependent prostate cancer. The studies revealed that both compounds are selective to AR over other closely related steroid hormone receptors and that FL442 exhibits equal inhibition efficiency towards the androgen-responsive LNCaP prostate cancer cell line as the most widely used antiandrogen bicalutamide and the more recently discovered enzalutamide. Notably, FL442 maintains antiandrogenic activity with enzalutamide-activated AR mutant F876L.

View Article and Find Full Text PDF

Misclassification of Curcuma species (family Zingiberaceae) may lead to unwanted human exposure to Curcuma elata sesquiterpenes zederone and germacrone which have caused hepatotoxicity and changes in CYP expression in laboratory animals. We investigated how these compounds interact with the human cytochrome P450 (CYP) system, in order to evaluate their potential for human liver toxicity and herb-drug interactions. We found that both sesquiterpenes (1-30 μM) greatly induced expression of CYP2B6 and CYP3A4 but not CYP1A2 mRNAs in human primary hepatocytes (HPHs).

View Article and Find Full Text PDF

Objectives: Our aim was to investigate the placental transfer of repaglinide by ex vivo placental perfusion experiment. In addition, the involvement of the active organic anion transporters (OATP1B1, OATP1B3 and OATP2B1) was studied by assessing the single nucleotide polymorphisms (SNPs) in genes (SLCO1B1, SLCO1B3 and SLCO2B1) encoding OATPs.

Study Design: Fifteen placentas were obtained after delivery and a 2-h non-recirculating perfusion of a single placental cotyledon was performed to study maternal-to-fetal and fetal-to-maternal transport of repaglinide by using antipyrine as a reference of passive-diffusion transfer compound.

View Article and Find Full Text PDF

An LC/MS/MS method was developed for the analysis of twelve cytochrome P450 (CYP)-specific probe metabolites and their nine parent drugs from human urine. CYP-specific metabolites of melatonin (CYP1A2), nicotine (CYP2A6), bupropion (CYP2B6), repaglinide (CYP2C8), losartan (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4) were all analyzed using the same LC/MS/MS method with a single analytical run, either after a one-at-a-time dose or cocktail-type dosing of the parent drugs. Ultra performance liquid chromatography (UPLC) with a 1.

View Article and Find Full Text PDF

Human urinary metabolism of the antidepressant bupropion was studied using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). A total of 20 metabolites were detected and identified. The phase I metabolism included formation of morpholinohydroxybupropion, threo- and erythrohydrobupropion, aromatic hydroxylation, butyl group hydroxylation with ketone hydrogenation and dihydroxylation.

View Article and Find Full Text PDF

A sensitive and rugged LC/MSMS method was developed for a comprehensive in vitro metabolic interaction screening assay with N-in-1 approach reported earlier. A cocktail consisting of ten cytochrome P450 (CYP)-selective probe substrates with known kinetic, metabolic and interaction properties in vivo was incubated in a pool of human liver microsomes, and metabolites of melatonin (CYP1A2), coumarin (CYP2A6), bupropion (CYP2B6), amodiaquine (CYP2C8) tolbutamide (CYP2C9), omeprazole (CYP2C19 and CYP3A4), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A4) and testosterone (CYP3A4) were simultaneously analysed with a single LC/MSMS run. Altogether, 13 metabolites and internal standard phenacetin were analysed in multiple reaction mode.

View Article and Find Full Text PDF

Phenolic compounds from the aerial parts of medicinal plant Rhodiola rosea were identified using LC/MS experiments with time-of-flight and triple quadrupole instruments, providing accurate mass and CID fragmentation data about the compounds. Supercritical fluid extraction (SFE) was used to remove non-polar compounds from the samples, followed by liquid extraction of the flavonoids. Flavonoids were the main constituents in aerial parts of the plant, and no phenylpropanoids were detected.

View Article and Find Full Text PDF