Publications by authors named "Aleksandra Urbanska"

A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death.

View Article and Find Full Text PDF

The aim of the study was to recognise what participant-, training- and post-injury-related factors are associated with an injury and re-injury occurrence in female pole dancers (PDs). 320 female PDs fulfilled a custom survey. 1050 injuries were reported by 276 PDs, 59% of injuries were related to lower extremity, 39% to upper extremity and 10% to spine and trunk.

View Article and Find Full Text PDF

An α particle-emitting nanodrug that is a potent and specific antitumor agent and also prompts significant remodeling of local immunity in the tumor microenvironment (TME) has been developed and may impact the treatment of melanoma. Biocompatible ultrasmall fluorescent core-shell silica nanoparticles (C' dots, diameter ∼6.0 nm) have been engineered to target the melanocortin-1 receptor expressed on melanoma through α melanocyte-stimulating hormone peptides attached to the C' dot surface.

View Article and Find Full Text PDF

Hypertrophic scarring is a dermal disorder resulting from collagen and other extra cellular matrix protein depositions following the deep trauma, severe burn injury, and surgery incisions. A variety of therapeutic procedures are currently available, however, achieving an ideal treatment method remains a challenge. In our recently published report, a 3D bilayered decellularized human amniotic membrane/electrospun silk fibroin membrane was fabricated and characterized for regenerative medical applications.

View Article and Find Full Text PDF

Despite esophageal adenocarcinoma (EAC) being the most widespread among gastrointestinal cancers, with an 11-fold increase in the risk of cancer for patients with Barrett esophagus (BE), its prognosis is still poor. There is a critical need to better perceive the biology of cancer progression and identification of specific targets that are the hallmark of BE's progression. This review explores the established animal models of BE, including genetic, surgical and nonsurgical approaches, potential chemoprevention targets, and the reasoning behind their applications to prevent Barrett-related EAC.

View Article and Find Full Text PDF

Severe burn injuries can lead to delays in healing and devastating scar formation. Attempts have been made to develop a suitable skin substitute for the scarless healing of such skin wounds. Currently, there is no effective strategy for completely scarless healing after the thermal injuries.

View Article and Find Full Text PDF

Agarose is a natural polysaccharide polymer having unique characteristics that give reason to consider it for tissue engineering applications. Special characteristics of agarose such as its excellent biocompatibility, thermo-reversible gelation behavior and physiochemical features support its use as a biomaterial for cell growth and/or controlled/localized drug delivery. The resemblance of this natural carbohydrate polymer to the extracellular matrix results in attractive features that bring about a strong interest in its usage in the field.

View Article and Find Full Text PDF

An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10 S/cm which appeared suitable for cellular activities.

View Article and Find Full Text PDF

Burn injuries have been reported to be an important cause of morbidity and mortality and they are still considered as unmet clinical need. Although there is a myriad of effective stem cells that have been suggested for skin regeneration, there is no one ideal scaffold. The aim of this study was to develop a three-dimensional (3D) bi-layer scaffold made of biological decellularized human amniotic membrane (AM) with viscoelastic electrospun nanofibrous silk fibroin (ESF) spun on top.

View Article and Find Full Text PDF

Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity.

View Article and Find Full Text PDF

In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes.

View Article and Find Full Text PDF

Within the gastrointestinal stem cell niche, nerves help to regulate both normal and neoplastic stem cell dynamics. Here, we reveal the mechanisms underlying the cancer-nerve partnership. We find that Dclk1 tuft cells and nerves are the main sources of acetylcholine (ACh) within the gastric mucosa.

View Article and Find Full Text PDF

Introduction: Amid the plethora of methods to repair critical bone defects, there is no one perfect approach. In this study, we sought to evaluate a potent 3-dimensional (3D) bioactive SiO2-CaO-P2O5 glasses (bioglass)/gelatin (gel) scaffold for its biocompatibility by seeding cells as well as for its regenerative properties by animal implantation.

Methods: Osteoblast cells were seeded onto nanocomposite scaffolds to investigate the process of critical-size calvarial defect via new bone formation.

View Article and Find Full Text PDF

Objective: The incidence of esophageal adenocarcinoma (EAC) is increasing, but factors contributing to malignant progression of its precursor lesion, Barrett's esophagus (BE), have not been defined. Hypergastrinemia caused by long-term use of proton pump inhibitors (PPIs), has been suggested as one possible risk factor. The gastrin receptor, CCK2R, is expressed in the cardia and upregulated in BE, suggesting the involvement of the gastrin-CCK2R pathway in progression.

View Article and Find Full Text PDF

Intestinal inflammation is one of the major factors that increase colorectal cancer (CRC) incidence worldwide. Inflammation in the gastrointestinal tract is directly linked to tumor development at the early stages of the disease, thus a key issue toward the prevention and the treatment of colonic neoplasia. Thus, the use of anti-inflammatory drugs has emerged first as a strategy to reduce chronic inflammation in case of many inflammatory bowel diseases (IBD), but it has proven its efficacy by reducing the risk of colonic neoplasia.

View Article and Find Full Text PDF

Tissue engineering aims to develop therapeutic products that utilize a combination of scaffolds with viable cell systems or responsive biomolecules derived from such cells, for the repair, restoration/regeneration of tissues. Here, the main goal is to enable the body to heal itself by the introduction of electrospun scaffolds, such that the body recognizes them as its own and in turn uses them to regenerate "neo-native" functional tissues. During the last decade, innovative nanofibrous scaffolds have attracted substantial interest in bone tissue engineering.

View Article and Find Full Text PDF

The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells.

View Article and Find Full Text PDF

CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity.

View Article and Find Full Text PDF

Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis.

View Article and Find Full Text PDF

A myriad of pathologies affect the gastrointestinal tract, citing this affected area as a significant target for therapeutic intervention. One group of therapeutic agents, antisense and oligonucleotides and small interfering RNAs, offer a promising platform for treating a wide variety of diseases ranging from cancer to auto-immune diseases. Current delivery methods are carried out either systemically or locally into diseased areas, both of which involve needles.

View Article and Find Full Text PDF

Ultrasound-targeted microbubble destruction (UTMD) is a promising technique with an immense target-specific gene delivery potential deep inside the human body. The potential of this technique has recently been confirmed for diabetic patients. This technology allows the genes to transfer specifically into the inefficient pancreas using ultrasound energy without viral vector utilization.

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages' activation states influence their roles in inflammation, wound healing, and tissue regeneration, highlighting the importance of understanding their behavior in different contexts.
  • Studies comparing macrophages from various sources—such as murine bone marrow, human blood, and THP-1 cells—have not given a direct comparison across all three cell sources under similar differentiation protocols.
  • The investigation revealed significant differences in gene expression patterns, particularly between murine and human macrophages, indicating that human PB-derived and iPSC-derived macrophages may serve as reliable alternatives for studying human macrophage functions.
View Article and Find Full Text PDF

The aim of this study is to develop a simple and cost-effective method for decellularization and preservation of human amniotic membrane (HAM) as a soft tissue replacement and a delivery system for stem cells. The HAM is decellularized (D) using new chemical and mechanical techniques. The decellularization scaffold is evaluated histologically and fully characterized.

View Article and Find Full Text PDF

Chaperone-mediated autophagy (CMA), a cellular process that contributes to protein quality control through targeting of a subset of cytosolic proteins to lysosomes for degradation, undergoes a functional decline with age. We have used a mouse model with liver-specific defective CMA to identify changes in proteostasis attributable to reduced CMA activity in this organ with age. We have found that other proteolytic systems compensate for CMA loss in young mice which helps to preserve proteostasis.

View Article and Find Full Text PDF

Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates.

View Article and Find Full Text PDF