Publications by authors named "Aleksandra Tata"

Cells expressing LGR5 play a pivotal role in homeostasis, repair, and regeneration in multiple organs including skin and gastrointestinal tract, yet little is known about their role in the lung. Findings from mice, a widely used animal model, suggest that lung LGR5 expression differs from that of humans. In this work, using a new transgenic pig model, we identify two main populations of LGR5 cells in the lung that are conserved in human, but not mouse lungs.

View Article and Find Full Text PDF

The upper airway, particularly the nasal and oral mucosal epithelium, serves as a primary barrier for microbial interactions throughout life. Specialized niches like the anterior nares and the tooth are especially susceptible to dysbiosis and chronic inflammatory diseases. To investigate host-microbial interactions in mucosal epithelial cell types, we reanalyzed our single-cell RNA sequencing atlas of human oral mucosa, identifying polybacterial signatures (20% Gram-positive, 80% Gram-negative) within both epithelial- and stromal-resident cells.

View Article and Find Full Text PDF

Proteins undergo reversible -acylation via a thioester linkage in vivo. -palmitoylation, modification by C16:0 fatty acid, is a common -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol.

View Article and Find Full Text PDF

Proteins undergo reversible -acylation via a thioester linkage in vivo. -palmitoylation, modification by C16:0 fatty acid, is a common -acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used -acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol.

View Article and Find Full Text PDF

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time.

View Article and Find Full Text PDF

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization.

View Article and Find Full Text PDF

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) of BAL cells has provided insights into coronavirus disease (COVID-19). However, reports have been limited by small patient cohorts. We performed a meta-analysis of BAL scRNA-seq data from healthy control subjects ( = 13) and patients with COVID-19 ( = 20), sourced from six independent studies (167,280 high-quality cells in total).

View Article and Find Full Text PDF

Targeted delivery of transgenes to tissue-resident stem cells and related niches offers avenues for interrogating pathways and editing endogenous alleles for therapeutic interventions. Here, we survey multiple adeno-associated virus (AAV) serotypes, administered via intranasal and retroorbital routes in mice, to target lung alveolar stem cell niches. We found that AAV5, AAV4, and AAV8 efficiently and preferentially transduce alveolar type-2 stem cells (AT2s), endothelial cells, and PDGFRA fibroblasts, respectively.

View Article and Find Full Text PDF

In both humans and mice, repair of acute kidney injury is worse in males than in females. Here, we provide evidence that this sexual dimorphism results from sex differences in ferroptosis, an iron-dependent, lipid-peroxidation-driven regulated cell death. Using genetic and single-cell transcriptomic approaches in mice, we report that female sex confers striking protection against ferroptosis, which was experimentally induced in proximal tubular (PT) cells by deleting glutathione peroxidase 4 (Gpx4).

View Article and Find Full Text PDF

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets.

View Article and Find Full Text PDF

Epithelial cells of diverse tissues are characterized by the presence of a single apical domain. In the lung, electron microscopy studies have suggested that alveolar type-2 epithelial cells (AT2s) en face multiple alveolar sacs. However, apical and basolateral organization of the AT2s and their establishment during development and remodeling after injury repair remain unknown.

View Article and Find Full Text PDF

Human respiratory viruses induce a wide breadth of disease phenotypes and outcomes of varying severity. Innovative models that recapitulate the human respiratory tract are needed to study such viruses, understand the virus-host interactions underlying replication and pathogenesis, and to develop effective countermeasures for prevention and treatment. Human organoid models provide a platform to study virus-host interactions in the proximal to distal lung in the absence of a human in vivo model.

View Article and Find Full Text PDF

Alveolar type 2 cells (AT2s) serve as stem cells of the alveoli and restore cell numbers after injury. Here, we describe a detailed protocol for the isolation, purification, and culture of murine and human AT2s. We have developed chemically defined and stroma-free culture conditions that enable expansion and maintenance of AT2s.

View Article and Find Full Text PDF

Mapping the spatial distribution and molecular identity of constituent cells is essential for understanding tissue dynamics in health and disease. We lack a comprehensive map of human distal airways, including the terminal and respiratory bronchioles (TRBs), which are implicated in respiratory diseases. Here, using spatial transcriptomics and single-cell profiling of microdissected distal airways, we identify molecularly distinct TRB cell types that have not-to our knowledge-been previously characterized.

View Article and Find Full Text PDF

The gas exchange units of the lung, the alveoli, are mechanically active and undergo cyclic deformation during breathing. The epithelial cells that line the alveoli contribute to lung function by reducing surface tension surfactant secretion, which is highly influenced by the breathing-associated mechanical cues. These spatially heterogeneous mechanical cues have been linked to several physiological and pathophysiological states.

View Article and Find Full Text PDF

Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages.

View Article and Find Full Text PDF

Overwhelming lipid peroxidation induces ferroptotic stress and ferroptosis, a non-apoptotic form of regulated cell death that has been implicated in maladaptive renal repair in mice and humans. Using single-cell transcriptomic and mouse genetic approaches, we show that proximal tubular (PT) cells develop a molecularly distinct, pro-inflammatory state following injury. While these inflammatory PT cells transiently appear after mild injury and return to their original state without inducing fibrosis, after severe injury they accumulate and contribute to persistent inflammation.

View Article and Find Full Text PDF

Epithelial tissues respond to a wide variety of environmental and genotoxic stresses. As an adaptive mechanism, cells can deviate from their natural paths to acquire new identities, both within and across lineages. Under extreme conditions, epithelial tissues can utilize "shape-shifting" mechanisms whereby they alter their form and function at a tissue-wide scale.

View Article and Find Full Text PDF

Tissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs).

View Article and Find Full Text PDF

Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumocytes derived from primary lung tissue.

View Article and Find Full Text PDF

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality.

View Article and Find Full Text PDF

Stem cells undergo dynamic changes in response to injury to regenerate lost cells. However, the identity of transitional states and the mechanisms that drive their trajectories remain understudied. Using lung organoids, multiple in vivo repair models, single-cell transcriptomics and lineage tracing, we find that alveolar type-2 epithelial cells undergoing differentiation into type-1 cells acquire pre-alveolar type-1 transitional cell state (PATS) en route to terminal maturation.

View Article and Find Full Text PDF

Cells demonstrate plasticity following injury, but the extent of this phenomenon and the cellular mechanisms involved remain underexplored. Using single-cell RNA sequencing (scRNA-seq) and lineage tracing, we uncover that myoepithelial cells (MECs) of the submucosal glands (SMGs) proliferate and migrate to repopulate the airway surface epithelium (SE) in multiple injury models. Specifically, SMG-derived cells display multipotency and contribute to basal and luminal cell types of the SMGs and SE.

View Article and Find Full Text PDF

We show that the loss or gain of transcription factor programs that govern embryonic cell-fate specification is associated with a form of tumor plasticity characterized by the acquisition of alternative cell fates normally characteristic of adjacent organs. In human non-small cell lung cancers, downregulation of the lung lineage-specifying TF NKX2-1 is associated with tumors bearing features of various gut tissues. Loss of Nkx2-1 from murine alveolar, but not airway, epithelium results in conversion of lung cells to gastric-like cells.

View Article and Find Full Text PDF