The present work aimed to evaluate whether the use of an innovative method such as hydrodynamic cavitation (HC) is suitable for the simultaneous removal of surfactants of different chemical natures (non-ionic, anionic and cationic) from actual car wash wastewater at different numbers of passes through the cavitation zone and different inlet pressures. An additional novelty was the use of multi-criteria decision support, which enabled the selection of optimal HC conditions that maximized the removal of each group of surfactants and chemical oxygen demand (COD) with minimal energy input. For the optimal HC variants, Fourier transform infrared spectroscopy (FT-IR/ATR) as well as investigations of surface tension, zeta potential, specific conductivity, system viscosity and particle size were carried out.
View Article and Find Full Text PDFThis study examined the influence of bioaugmentation on metal concentrations (aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel and zinc) in anaerobically digested sewage sludge. To improve the digestion efficiency, bioaugmentation with a mixture of wild-living Archaea and Bacteria (MAB) from Yellowstone National Park, USA, was used. The total concentration of all metals was higher in the digestate than in the feedstock.
View Article and Find Full Text PDF