Adsorption and chromatographic properties of oxidized and hydrogenated 'high pressure and high temperature' synthesised diamond (HPHT) are studied using high-performance liquid chromatography. The retention factors of organic cation (benzyltributylammonium chloride), weak base (aniline), weak acid (benzoic acid), strong acid (benzenesulfonic acid), hydrophobic toluene, and hydrophilic uracil are obtained at varied pH, organic solvent content, and ionic strength of mobile phase. Both adsorbents exhibited moderate polarity with a mixed-mode retention mechanism with a combination of electrostatic, hydrophobic and hydrophilic interactions.
View Article and Find Full Text PDFSince the advent of diamond-based adsorbents in the late 1960s, the interest in their use for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) has steadily increased. This is primarily due to their unique properties, such as extreme chemical and thermal stability, high mechanical strength and biocompatibility, and complex mixed-mode retention mechanisms. Currently, the most commonly used synthetic diamonds in SPE and HPLC are detonation nanodiamonds (DND), high-pressure high-temperature (HPHT) diamonds, and chemical vapour deposition (CVD) diamonds.
View Article and Find Full Text PDFA new ion chromatography method has been developed to study graphene oxide (GO) reduction by monitoring hydrazine concentration in the GO suspension. The method is based on ion chromatographic separation of hydrazine (from excess ammonia) and its selective determination by electrochemical detection. The developed analytical protocol overcame the significant practical challenges of atmospheric hydrazine oxidation and minimised the matrix interference in both separation and detection which result from the excess of ammonium with respect to hydrazine (up to 5.
View Article and Find Full Text PDF