Primary cancer cells reflect the genetic background and phenotype of a tumor. Immortalized cells with higher proliferation activity have an advantage over primary cells. The aim of the study was to immortalize the primary ovarian cancer (OvCa) cells using the plasmid-carrying human telomerase reverse transcriptase (hTERT) gene and compare their phenotype and biological activity with the primary cells.
View Article and Find Full Text PDFProgressive incidence and a pessimistic survival rate of breast cancer in women worldwide remains one of the most concerning topics. Progressing research indicates a potentially high effectiveness of use cold atmospheric plasma (CAP) systems. The undoubted advantage seems its simplicity in combination with other anti-cancer modalities.
View Article and Find Full Text PDFDuring the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...
View Article and Find Full Text PDFOvarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as in high-grade serous and in low-grade serous carcinomas highlight the need for tailored therapies.
View Article and Find Full Text PDFBone tissue engineering using different scaffolds is a new therapeutic approach in regenerative medicine. This study explored the osteogenic potential of human dental pulp stem cells (hDPSCs) grown on a hydrolytically modified poly(L-lactide-co-caprolactone) (PLCL) electrospun scaffold and a non-woven hyaluronic acid (HYAFF-11™) mesh. The adhesion, immunophenotype, and osteogenic differentiation of hDPSCs seeded on PLCL and HYAFF-11™ scaffolds were analyzed.
View Article and Find Full Text PDFAtmospheric pressure plasma treatments are nowadays gaining importance to improve the performance of biomaterials in the orthopedic field. Among those, magnesium phosphate-based cements (MPCs) have recently shown attractive features as bone repair materials. The effect of plasma treatments on such cements, which has not been investigated so far, could represent an innovative strategy to modify MPCs' physicochemical properties and to tune their interaction with cells.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid.
View Article and Find Full Text PDFMesenchymal stromal/stem cells (MSCs) are a particular population of cells that play an essential role in the regeneration potential of the body. As a source of MSCs, the umbilical cord (UC) has significant advantages, such as a no-risk procedure of tissue retrieval after birth and the easiness of MSCs isolation. In the presented study, the cells derived from the feline whole umbilical cord (WUC) and two separate parts of the UC tissue, including Wharton's jelly (WJ) and umbilical cord vessels (UCV), were investigated to check whether they exhibit MSCs characteristics.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) attract interest in regenerative medicine for their potential application in bone regeneration. However, direct transplantation of cells into damaged tissue is not efficient enough to regenerate large bone defects. This problem could be solved with a biocompatible scaffold.
View Article and Find Full Text PDFInt J Mol Sci
June 2022
Mesenchymal stem/stromal cells (MSC) have been extensively studied over the last 30 years in the context of their regenerative and immunomodulatory activities for potential application in regenerative medicine [...
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue.
View Article and Find Full Text PDFPoly(l-lactide--caprolactone) (PLCL) electrospun scaffolds with seeded stem cells have drawn great interest in tissue engineering. This study investigated the biological behavior of human dental pulp stem cells (hDPSCs) grown on a hydrolytically-modified PLCL nanofiber scaffold. The hDPSCs were seeded on PLCL, and their biological features such as viability, proliferation, adhesion, population doubling time, the immunophenotype of hDPSCs and osteogenic differentiation capacity were evaluated on scaffolds.
View Article and Find Full Text PDFWe proposed an innovative and economic method for rapid production of functionalized orange juice (OJ) with excellent nutritional properties, prolonged shelf life, and safe consumption. To reach this goal, we have employed direct current atmospheric pressure glow discharge, generated in contact with a flowing liquid cathode (FLC-dc-APGD) in a highly-throughput reaction-discharge system. It was found that controlled FLC-dc-APGD-treatment of OJ lead to increase the concentration of selected metals and phenolic compounds.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) can improve chronic wound healing; however, recent studies suggest that the therapeutic effect of MSCs is mediated mainly through the growth factors and cytokines secreted by these cells, referred to as the MSC secretome. To overcome difficulties related to the translation of cell therapy into clinical use such as efficacy, safety and cost, we propose a hydrogel loaded with a secretome from the recently established human adipose tissue mesenchymal stem cell line (HATMSC2) as a potential treatment for chronic wounds. Biocompatibility and biological activity of hydrogel-released HATMSC2 supernatant were investigated in vitro by assessing the proliferation and metabolic activity of human fibroblast, endothelial cells and keratinocytes.
View Article and Find Full Text PDFCurrent treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified.
View Article and Find Full Text PDFUsing the vascularized skin allograft (VSA) model, we compared the tolerogenic effects of different allogeneic bone marrow transplantation (BMT) delivery routes into immunoprivileged compartments under a 7-day protocol immunosuppressive therapy. Twenty-eight fully MHC mismatched VSA transplants were performed between ACI (RT1) donors and Lewis (RT1) recipients in four groups of seven animals each, under a 7-day protocol of alfa/beta TCRmAb/CsA (alpha/beta-TCR monoclonal antibodies/Cyclosporine A therapy). Donor bone marrow cells (BMC) (100 × 106 cells) were injected into three different immunoprivileged compartments: Group 1: Control, without cellular supportive therapy, Group 2: Intracapsular BMT, Group 3: Intragonadal BMT, Group 4: Intrathecal BMT.
View Article and Find Full Text PDFMesenchymal stem cell-based therapies are promising tools for bone tissue regeneration. However, tracking cells and maintaining them in the site of injury is difficult. A potential solution is to seed the cells onto a biocompatible scaffold.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, causing motor neuron and skeletal muscle loss and death. One of the promising therapeutic approaches is stem cell graft application into the brain; however, an immune reaction against it creates serious limitations. This study aimed to research the efficiency of glial restricted progenitors (GRPs) grafted into murine CNS (central nervous system) in healthy models and the SOD1G93A ALS disease model.
View Article and Find Full Text PDFThis study evaluated the efficacy of donor recipient chimeric cell (DRCC) therapy created by fusion of donor and recipient derived bone marrow cells (BMC) in chimerism and tolerance induction in a rat vascularized composite allograft (VCA) model. Twenty-four VCA (groin flaps) from MHC-mismatched ACI (RT1) donors were transplanted to Lewis (RT1) recipients. Rats were randomly divided into (n = 6/group): Group 1-untreated controls, Groups 2-7-day immunosuppression controls, Group 3-DRCC, and Group 4-DRCC with 7-day anti-αβTCR monoclonal antibody and cyclosporine A protocol.
View Article and Find Full Text PDFBreast cancer remains the most common type of cancer, occurring in middle-aged women, and often leads to patients' death. In this work, we applied a cold atmospheric pressure plasma (CAPP)-based reaction-discharge system, one that is unique in its class, for the production of CAPP-activated media (DMEM and Opti-MEM); it is intended for further uses in breast cancer treatment. To reach this aim, different volumes of DMEM or Opti-MEM were treated by CAPP.
View Article and Find Full Text PDFCell-based therapies using mesenchymal stem cells (MSCs) are a promising tool in bone tissue engineering. Bone regeneration with MSCs involves a series of molecular processes leading to the activation of the osteoinductive cascade supported by bioactive factors, including fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2). In this study, we examined the biological characteristics and osteogenic differentiation potential of sheep bone marrow MSCs (BM-MSCs) treated with 20 ng/mL of FGF-2 and 100 ng/mL BMP-2 in vitro.
View Article and Find Full Text PDFWe present an optimized non-thermal atmospheric plasma (NTAP)-based reaction-discharge system that was applied for a continuous-flow treatment of apple juice (AJ). To optimize this system for a high-throughput production of AJ with ameliorated properties, the effect of several parameters was studied using design of experiments approach followed by the response surface methodology. Additionally, nutritional, physicochemical, microbiological and cytotoxic properties of resulting AJ were assessed.
View Article and Find Full Text PDFTransport of bioactive cargo of microvesicles (MVs) into target cells can affect their fate and behavior and change their microenvironment. We assessed the effect of MVs derived from human immortalized mesenchymal stem cells of adipose tissue-origin (HATMSC2-MVs) on the biological activity of the ovarian cancer cell lines ES-2 (clear cell carcinoma) and OAW-42 (cystadenocarcinoma). The HATMSC2-MVs were characterized using dynamic light scattering (DLS), transmission electron microscopy, and flow cytometry.
View Article and Find Full Text PDFThe new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 in Wuhan, China, has reached worldwide pandemic proportions, causing coronavirus disease 2019 (COVID-19). The clinical manifestations of COVID-19 vary from an asymptomatic disease course to clinical symptoms of acute respiratory distress syndrome and severe pneumonia. The lungs are the primary organ affected by SARS-CoV-2, with a very slow turnover for renewal.
View Article and Find Full Text PDFA one-step, highly-efficiency, and low-cost cold atmospheric pressure plasma (CAPP)-based method for obtaining safe-to-consume beetroot juice (BRJ) with enhanced nutritional quality is presented. Three reaction-discharge systems with different CAPPs were studied to check how the composition and physicochemical properties changed during CAPP treatment of BRJ. To identify reactive species occur in gas phase of applied CAPP for BRJ treatment, optical emission spectrometry was used.
View Article and Find Full Text PDF