Publications by authors named "Aleksandra Kapuscik"

Cyanobacteria produce many biologically active metabolites synthesized via nonribosomal synthetic pathways such as cyclic microcystins (MCs) and linear aeruginosins (Aers). The present study aimed to investigate the effects of different MC variants and the newly isolated aerugenosin Aer-865 on macrophages, which represent one of the key effector cells within the innate immune responses. Specifically, our study included RAW 264.

View Article and Find Full Text PDF

The production of cytotoxic molecules interfering with mammalian cells is extensively reported in cyanobacteria. These compounds may have a use in pharmacological applications; however, their potential toxicity needs to be considered. We performed cytotoxicity tests of crude cyanobacterial extracts in six cell models in order to address the frequency of cyanobacterial cytotoxicity to human cells and the level of specificity to a particular cell line.

View Article and Find Full Text PDF

Aeruginosin-865 (Aer-865), isolated from terrestrial cyanobacterium Nostoc sp. Lukešová 30/93, is the first aeruginosin-type peptide containing both a fatty acid and a carbohydrate moiety, and is the first aeruginosin to be found in the genus Nostoc. Mass spectrometry, chemical and spectroscopic analysis as well as one- and two-dimensional NMR and chiral HPLC analysis of Marfey derivatives were applied to determine the peptidic sequence: D-Hpla, D-Leu, 5-OH-Choi, Agma, with hexanoic and mannopyranosyl uronic acid moieties linked to Choi.

View Article and Find Full Text PDF

Chronic inflammation is at least partially mediated by the chemokine-mediated attraction and by the adhesion molecule-directed binding of leukocytes to the activated endothelium. Therefore, it is therapeutically important to identify anti-inflammatory compounds able to control the interaction between leukocytes and the endothelial compartments of the micro- and macrocirculation. When testing novel drug candidates, it is, however, of the utmost importance to detect side effects, such as potential cytotoxic and barrier-disruptive activities.

View Article and Find Full Text PDF