Polyethylene and polystyrene are massively used around the world in various applications and are the most abundant plastic waste. Once in the marine environment, under the influence of physical and chemical factors, plastic products degrade, changing from the size category of macroplastics to microplastics. In order to study the effect of plastic on marine organisms, we modeled the conditions of environmental pollution with different-sized plastic-polystyrene microparticles of 0.
View Article and Find Full Text PDFNowadays, synthetic polymer (plastic) particles are ubiquitous in the environment. It is known that for several decades microplastics (MPs) have been accumulating in the World Ocean, becoming available to a large variety of marine organisms. Particularly alarming is the accumulation of aging plastic particles, as the degradation processes of such particles increase their toxicity.
View Article and Find Full Text PDFHypometabolism is a common strategy employed by resilient species to withstand environmental stressors that would be life-threatening for other organisms. Under conditions such as hypoxia/anoxia, temperature and salinity stress, or seasonal changes (e.g.
View Article and Find Full Text PDFВiotic factors may be the driving force of plastic fragmentation along with abiotic factors. Since understanding the processes of biodegradation and biological depolymerization of plastic is important, a new methodological approach was proposed in this study to investigate the role of marine invertebrate digestive enzymes in plastic biodegradation. The aim of this study is to evaluate the possibility of enzymatic biodegradation of polyethylene fragments in the digestive gland homogenate of marine invertebrates differing in their feeding type ().
View Article and Find Full Text PDFMarine bivalves belonging to the and Families were used in this research. The specific objectives of this study were: to determine the Fatty Acids (FAs) of mitochondrial gill membranes in bivalves with different lifespans, belonging to the same family, and to calculate their peroxidation index; to compare the levels of ROS generation, malondialdehyde (MDA), and protein carbonyls in the mitochondria of gills, in vitro, during the initiation of free-radical oxation; to investigate whether the FAs of mitochondria gill membranes affect the degree of their oxidative damage and the maximum lifespan of species (MLS). The qualitative membrane lipid composition was uniform in the studied marine bivalves, regardless of their MLS.
View Article and Find Full Text PDFMicro- and nano-sized particles of polytetrafluoroethylene (PTFE) were used as model (reference) particles to study the biological effects of plastic pollution. Since the PTFE molecule contains fluorine, considered as an "atomic marker" sharply distinguishing it from other common plastics, micro- and nano-particles of PTFE have a specific crystalline structure and are, therefore, well identified by the methods of polarized light microscopy (POL), Raman microspectroscopy (micro-Raman), and energy-dispersive spectroscopy (EDS). Examples of PTFE particles detection in hemolimph of the cockroach Blatella germanica, in hemolimph of the larva and in faecal pellets of imago of a fly Lucilia sp.
View Article and Find Full Text PDFThe activities of the key antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GP) and glutathione reductase (GR) as well as levels of reduced glutathione (GSH) and integral antioxidant activity (IAA), were studied in the digestive glands and gills of 14 bivalve species. Species and tissue differences of the antioxidant (AO) systems of the investigated mollusks were discussed in connection with their physiological and biochemical peculiarities. This article describes the role of the AO system of mollusks in adaptation to natural habitat conditions and shows the relationship of AO activity with the maximum habitat depth (MHD) and maximum lifespan (MLS) of these species.
View Article and Find Full Text PDFThe aim of this study was to investigate the sensitivity of the marine scallop Mizuhopecten yessoensis to different copper concentrations (10 and 30 μgl-1) in the prespawning period. Reaction of the scallop to this effect was evaluated by a set of biomarkers, including general metabolism enzymes (acid and alkaline phosphatase activities - AcPase, ALP), and oxidative stress parameters (catalase antioxidant enzyme activity - CAT and levels of damage for DNA, lipids and proteins). Experiment results show that when copper is accumulated in tissues, enzyme activity changes are similar and have phasic character.
View Article and Find Full Text PDF