Publications by authors named "Aleksandra Holownia"

Once considered as mere curiosities, acyl metalloids are now recognized for their utility in enabling chemical synthesis. This perspective considers the reactivity displayed by acylboron, -silicon, -germanium, and tellurium species. By highlighting the role of these species in various transformations, we demonstrate how differences between the comprising elements result in varied reaction outcomes.

View Article and Find Full Text PDF

We report a catalytic cross-coupling process between aryl (pseudo)halides and boron-based acyl anion equivalents. This mode of acylboronate reactivity represents polarity reversal, which is supported by the observation of tetracoordinated boronate and acyl palladium(II) species by B, P NMR, and mass spectrometry. A broad scope of aliphatic and aromatic acylboronates has been examined, as well as a variety of aryl (pseudo)halides.

View Article and Find Full Text PDF

The application of carboxy-MIDA-boronate (MIDA=N-methyliminodiacetic acid) as an in situ CO surrogate for various palladium-catalyzed transformations is described. Carboxy-MIDA-boronate was previously shown to be a bench-stable boron-containing building block for the synthesis of borylated heterocycles. The present study demonstrates that, in addition to its utility as a precursor to heterocycle synthesis, carboxy-MIDA-boronate is an excellent in situ CO surrogate that is tolerant of reactive functionalities such as amines, alcohols, and carbon-based nucleophiles.

View Article and Find Full Text PDF

The synthesis and applications of carboxy-MIDA-boronate, a novel C1 building block, are described. This molecule is accessible via a ruthenium tetraoxide-mediated cleavage of commercially available ethynyl-MIDA-boronate. In the course of this study, carboxy-MIDA-boronate was found to possess ambident reactivity towards nucleophiles.

View Article and Find Full Text PDF

During the revision of this Article prior to publication, a computational study was reported (Vallejos, M. M. & Pellegrinet, S.

View Article and Find Full Text PDF

As part of a program aimed at metal-catalyzed oxidative transformations of molecules with carbon-metalloid bonds, the synthesis of α-borylated ketones is reported via regioselective TBHP-mediated Wacker-type oxidation of N-methyliminodiacetic acid (MIDA)-protected alkenylboronates. The observed regioselectivity correlates with the hemilabile nature of the B-N dative bond in the MIDA boronate functional group, which allows boron to guide selectivity through a neighboring group effect.

View Article and Find Full Text PDF

Tetracoordinate MIDA (N-methyliminodiacetic acid) boronates have found broad utility in chemical synthesis. Here, we describe mechanistic insights into the migratory aptitude of the MIDA boryl group in boron transfer processes, and show that the hemilability of the nitrogen atom on the MIDA ligand enables boron to mechanistically resemble either a hydride or a proton. The first case involves a 1,2-boryl shift, in which boron migrates as a nucleophile in its tetracoordinate form.

View Article and Find Full Text PDF

Herein, we demonstrate the synthesis and functionalization of α-boryl aldoximes from α-boryl aldehydes, with no sign of C-to-N boryl migration. Selective modification of the oxime functionality enables access to a wide range of borylated compounds, such as borylated heterocycles and N-acetoxyamides. By reducing the α-boryl aldoximes, MIDA deprotection yields the corresponding β-boryl hydroxylamines.

View Article and Find Full Text PDF

Described herein is the preparation of oxalyl boronate building blocks and their application for the construction of heterocycles. The oxalyl unit, readily accessible through commercially available starting materials, enables a modular approach for the synthesis of imidazoles. A variety of aromatic, heteroaromatic, and alkyl carboxaldehydes were condensed with oxalyl boronates to afford substituted boryl imidazoles in a regiocontrolled fashion.

View Article and Find Full Text PDF

Boratriazaroles were discovered in the late 1960s, and since then, a variety of substituted boratriazarole derivatives have been prepared. However, no study has compared the properties of these BN heterocycles with their carbon-based analogues. In this work, we have prepared a series of boratriazarole derivatives and have investigated how structural variations in the five-member heterocycle affect photophysical and electronic properties.

View Article and Find Full Text PDF