Publications by authors named "Aleksandra Czyrska-Filemonowicz"

The main strengthening mechanism for Inconel 718 (IN718), a Ni-based superalloy, is precipitation hardening by γ' and γ″ particles. It is thus essential, for good alloy performance, that precipitates with the desired chemical composition have adequate size and dispersion. The distribution of the γ' and γ″ phases and their chemical composition were investigated in the nickel-based Inconel 718 superalloy by taking advantage of the new capabilities of scanning transmission electron microscopy and energy-dispersive X-ray spectrometry using a windowless multiple detector, a high-brightness Schottky electron gun, and a spherical aberration corrector in the illumination probe optics.

View Article and Find Full Text PDF

The ATI 718Plus is a creep-resistant nickel-based superalloy exhibiting high strength and excellent oxidation resistance in high temperatures. The present study is focused on multiscale 2D and 3D characterization (morphological and chemical) of the scale and the layer beneath formed on the ATI 718Plus superalloy during oxidation at 850 °C up to 4000 h in dry and wet air. The oxidized samples were characterized using various microscopic methods (SEM, TEM and STEM), energy-dispersive X-ray spectroscopy and electron diffraction.

View Article and Find Full Text PDF

Electrospun nanofibers have ability to boost cell proliferation in tissue engineered scaffolds as their structure remind cells extra cellular matrix of the native tissue. The complex architecture and network of nanofibrous scaffolds requires advanced characterization methods to understand interrelationship between cells and nanofibers. In our study, we used complementary 2D and 3D analyses of electrospun polylactide-co-glycolide acid (PLGA) scaffolds in two configurations: aligned and randomly oriented nanofibers.

View Article and Find Full Text PDF

To address one of the serious problems associated with permanent implants, namely bacterial infections, novel organic/inorganic coatings containing zinc oxide nanoparticles (nZnO) are proposed. Coatings were obtained by electrophoretic deposition (EPD) on stainless steel 316L. Different deposition conditions namely: deposition times in the range 60-300s and applied voltage in the range 5-30V as well as developing a layered coating approach were studied.

View Article and Find Full Text PDF

Zinc (Zn)-containing materials have osteogenic and antibacterial activities while bioactive glass nanoparticles (BGN) show bone-bonding ability, as well as osteoconductive and osteoinductive properties. Zn-containing BGN are therefore considered to be promising materials for various biomedical applications, particularly in bone regeneration. In this study, we report a convenient method to prepare Zn-containing BGN by coating ZnO quantum dots (QDs) on BGN via electrostatic interactions.

View Article and Find Full Text PDF

A combinatorial approach is applied to rapidly deposit and screen Ag-Al thin films to evaluate the mechanical, tribological, and electrical properties as a function of chemical composition. Ag-Al thin films with large continuous composition gradients (6-60 atom % Al) were deposited by a custom-designed combinatorial magnetron sputtering system. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning and transmission electron microscopy (SEM and TEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and four-point electrical resistance screening were employed to characterize the chemical composition, structure, and physical properties of the films in a time-efficient way.

View Article and Find Full Text PDF

The atomic redistribution processes occurring in multiparticle nanostructures are hardly understood. To obtain a more detailed insight, we applied high-resolution microscopic, diffraction and spectroscopic characterization techniques to investigate the fine structure and elemental distribution of various bimetallic aerogels with 1:1 compositions, prepared by self-assembly of single monometallic nanoparticles. The system Au-Ag exhibited a complete alloy formation, whereas Pt-Pd aerogels formed a Pd-based network with embedded Pt particles.

View Article and Find Full Text PDF

We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 °C, showing in unparalleled detail where and how precipitates nucleate, grow, or dissolve.

View Article and Find Full Text PDF