Numerous reagents have been developed to enable chemical proteomic analysis of small molecule-protein interactomes. However, the performance of these reagents has not been systematically evaluated and compared. Herein, we report our efforts to conduct a parallel assessment of two widely used chemically cleavable linkers equipped with dialkoxydiphenylsilane (DADPS linker) and azobenzene (AZO linker) moieties.
View Article and Find Full Text PDFChem Commun (Camb)
August 2019
The field of chemical biology has introduced several approaches, typically using chemical probes, to measure the direct binding interaction of a small molecule with its biological target in cells. The use of these direct target engagement assays in pharmaceutical development can support mechanism of action hypothesis testing, rank ordering of compounds, and iterative improvements of chemical matter. This Feature Article highlights a newer application of these approaches: the quantification of target engagement in animal models to support late stage preclinical development and the nomination of a drug candidate to clinical trials.
View Article and Find Full Text PDFPhenotypic screening provides compounds with very limited target cellular localization data. In order to select the most appropriate target identification methods, determining if a compound acts at the cell-surface or intracellularly can be very valuable. In addition, controlling cell-permeability of targeted therapeutics such as antibody-drug conjugates (ADCs) and targeted nanoparticle formulations can reduce toxicity from extracellular release of drug in undesired tissues or direct activity in bystander cells.
View Article and Find Full Text PDFCovalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates.
View Article and Find Full Text PDFChemical proteomics enables comprehensive profiling of small molecules in complex proteomes. A critical component to understand the interactome of a small molecule is the precise location on a protein where the interaction takes place. Several approaches have been developed that take advantage of bio-orthogonal chemistry and subsequent enrichment steps to isolate peptides modified by small molecules.
View Article and Find Full Text PDFThe productivity of medicinal chemistry programs can be significantly increased through the introduction of automation, leading to shortened discovery cycle times. Herein, we describe a platform that consolidates synthesis, purification, quantitation, dissolution, and testing of small molecule libraries. The system was validated through the synthesis and testing of two libraries of binders of polycomb protein EED, and excellent correlation of obtained data with results generated through conventional approaches was observed.
View Article and Find Full Text PDFDetermination of target engagement following drug administration under physiological conditions is essential for understanding clinical outcomes of therapeutic candidates. While the list of potential techniques that enable studies of target engagement is continuously expanding, identification of the best method to evaluate interactions between a ligand and its cellular binding partner(s) remains far from straightforward. We developed and compared the applicability of two label-based techniques; inverse electron demand Diels-Alder (IED-DA) ligation-based pull-down and TR-FRET assays for in-cell determination of target occupancy of c-Src kinase and p38-α kinase by the reversible inhibitor Dasatinib.
View Article and Find Full Text PDFThe list of protein aggregation-associated degenerative diseases is long and growing, while the portfolio of disease-modifying strategies is very small. In this review and perspective, we assess what has worked to slow the progression of an aggregation-associated degenerative disease, covering the underlying mechanism of pharmacologic action and what we have learned about the etiology of the transthyretin amyloid diseases and likely amyloidoses in general. Next, we introduce emerging therapies that should apply more generally to protein misfolding and/or aggregation diseases, approaches that rely on adapting the protein homeostasis or proteostasis network for disease amelioration.
View Article and Find Full Text PDFPlacebo-controlled clinical trials are useful for identifying the dose of a drug candidate that produces a meaningful clinical response in a patient population. Currently, Pfizer, Inc. is enrolling a 400-person clinical trial to test the efficacy of 20 or 80 mg of tafamidis to ameliorate transthyretin (TTR)-associated cardiomyopathy using clinical endpoints.
View Article and Find Full Text PDFFluorogenic probes, due to their often greater spatial and temporal sensitivity in comparison to permanently fluorescent small molecules, represent powerful tools to study protein localization and function in the context of living systems. Herein, we report fluorogenic probe 4, a 1,3,4-oxadiazole designed to bind selectively to transthyretin (TTR). Probe 4 comprises a fluorosulfate group not previously used in an environment-sensitive fluorophore.
View Article and Find Full Text PDFThe transthyretin (TTR) amyloidoses are a group of degenerative diseases caused by TTR aggregation, requiring rate-limiting tetramer dissociation. Kinetic stabilization of TTR, by preferential binding of a drug to the native tetramer over the dissociative transition state, dramatically slows the progression of familial amyloid polyneuropathy. An established method for quantifying the kinetic stability of recombinant TTR tetramers in buffer is subunit exchange, in which tagged TTR homotetramers are added to untagged homotetramers at equal concentrations to measure the rate at which the subunits exchange.
View Article and Find Full Text PDFWe seek fluorogenic small molecules that generate a fluorescent conjugate signal if and only if they react with a given protein-of-interest (i.e., small molecules for which noncovalent binding to the protein-of-interest is insufficient to generate fluorescence).
View Article and Find Full Text PDFThe misassembly of soluble proteins into toxic aggregates, including amyloid fibrils, underlies a large number of human degenerative diseases. Cardiac amyloidoses, which are most commonly caused by aggregation of Ig light chains or transthyretin (TTR) in the cardiac interstitium and conducting system, represent an important and often underdiagnosed cause of heart failure. Two types of TTR-associated amyloid cardiomyopathies are clinically important.
View Article and Find Full Text PDFMolecules that bind selectively to a given protein and then undergo a rapid chemoselective reaction to form a covalent conjugate have utility in drug development. Herein a library of 1,3,4-oxadiazoles substituted at the 2 position with an aryl sulfonyl fluoride and at the 5 position with a substituted aryl known to have high affinity for the inner thyroxine binding subsite of transthyretin (TTR) was conceived of by structure-based design principles and was chemically synthesized. When bound in the thyroxine binding site, most of the aryl sulfonyl fluorides react rapidly and chemoselectively with the pKa-perturbed K15 residue, kinetically stabilizing TTR and thus preventing amyloid fibril formation, known to cause polyneuropathy.
View Article and Find Full Text PDFFurther chemical optimization of the MLSCN/MLPCN probe ML077 (KCC2 IC(50)=537 nM) proved to be challenging as the effort was characterized by steep SAR. However, a multi-dimensional iterative parallel synthesis approach proved productive. Herein we report the discovery and SAR of an improved novel antagonist (VU0463271) of the neuronal-specific potassium-chloride cotransporter 2 (KCC2), with an IC(50) of 61 nM and >100-fold selectivity versus the closely related Na-K-2Cl cotransporter 1 (NKCC1) and no activity in a larger panel of GPCRs, ion channels and transporters.
View Article and Find Full Text PDFA benzo[a]anthraquinone ring system, common to a group of angucycline antibiotics, has been prepared by a unique cascade of reactions. The reaction sequence was initiated by a Suzuki-Miyaura cross-coupling between a bromoquinone and vinyl boronic anhdyride. The reaction product is proposed to undergo a 6π-electron cyclization triggered by reductive activation of the quinone.
View Article and Find Full Text PDFIn the course of studies directed toward the synthesis of dideoxy lomaiviticinone, 3-(nitromethyl)cyclohexenones 2a (X = H) and 2b (X = I) were prepared. The corresponding enolates were reacted with naphthazarin (1) and unexpectedly afforded 1,2-oxazepine 3 and isoxazole 4, respectively. Rationale for their formation is proposed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2009
The dideoxy core (23) of lomaiviticinone and congener 15 were derived starting from (-)-quinic acid in a stereocontrolled fashion.
View Article and Find Full Text PDF