Publications by authors named "Aleksandra Badura"

Pain assessment in patients with temporomandibular joint (TMJ) disorders during physiotherapy is a challenging yet desired task. Our study addresses two issues. First, we compare the pain perception in patients with TMJ disorders and a control group.

View Article and Find Full Text PDF
Article Synopsis
  • The review looks at how some people with inborn errors of immunity (IEI) also have problems with brain development, which are called neurodevelopmental disorders (NDDs).
  • It notes that while more reports are coming out about these issues, we still don't really know how often they happen together.
  • The authors want doctors to pay more attention to these problems because they can start early and affect a person's life for a long time, making it important to diagnose them properly.
View Article and Find Full Text PDF

Access to large amounts of data is essential for successful machine learning research. However, there is insufficient data for many applications, as data collection is often challenging and time-consuming. The same applies to automated pain recognition, where algorithms aim to learn associations between a level of pain and behavioural or physiological responses.

View Article and Find Full Text PDF

This study aims to design a time-continuous pain level assessment system for temporomandibular joint therapy. Our objectives cover verifying literature suggestions on pain stimulus, protocols for collecting reference data, and continuous pain recognition models. We use two types of pain data acquired during 1) heat stimulation and 2) temporomandibular joint therapy.

View Article and Find Full Text PDF

Background: Current phenotyping approaches for murine autism models often focus on one selected behavioral feature, making the translation onto a spectrum of autistic characteristics in humans challenging. Furthermore, sex and environmental factors are rarely considered. Here, we aimed to capture the full spectrum of behavioral manifestations in 3 autism mouse models to develop a "behavioral fingerprint" that takes environmental and sex influences under consideration.

View Article and Find Full Text PDF

The investigation of the dynamics of Purkinje cell (PC) activity is crucial to unravel the role of the cerebellum in motor control, learning and cognitive processes. Within the cerebellar cortex (CC), these neurons receive all the incoming sensory and motor information, transform it and generate the entire cerebellar output. The relatively homogenous and repetitive structure of the CC, common to all vertebrate species, suggests a single computation mechanism shared across all PCs.

View Article and Find Full Text PDF

The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states.

View Article and Find Full Text PDF

Delay eyeblink conditioning has been extensively used to study associative learning and the cerebellar circuits underlying this task have been largely identified. However, there is a little knowledge on how factors such as strain, sex and innate behaviour influence performance during this type of learning. In this study, we used male and female mice of C57BL/6J (B6) and B6CBAF1 strains to investigate the effect of sex, strain and locomotion in delay eyeblink conditioning.

View Article and Find Full Text PDF
Article Synopsis
  • A patient with both hypogammaglobulinemia (low antibody levels) and autism spectrum disorder (ASD) was found to have biallelic mutations in the PAX5 gene, which is a vital transcription factor.
  • Research using a mouse model with these PAX5 mutations showed important developmental issues including blocked B cell development, immune response problems, and various ASD-related behavioral deficits.
  • The study also identified PAX5's critical role in brain development, particularly in the cerebellum and midbrain, linking genetic mutations to both immunological deficiencies and neurodevelopmental disorders.
View Article and Find Full Text PDF

Tuberous sclerosis complex 1 (TSC1) is a tumor suppressor that promotes the inhibition of mechanistic target of rapamycin (mTOR) pathway, and mutations in lead to a rare complex disorder of the same name. Despite phenotype heterogeneity, up to 50% of TSC patients present with autism spectrum disorder (ASD). Consequently, TSC models are often used to probe molecular and behavioral mechanisms of ASD development.

View Article and Find Full Text PDF

Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process.

View Article and Find Full Text PDF

The marble burying test is a commonly used paradigm to describe phenotypes in mouse models of neurodevelopmental and psychiatric disorders. The current methodological approach relies predominantly on reporting the number of buried marbles at the end of the test. By measuring the proxy of the behavior (buried marbles), many important characteristics regarding the temporal aspect of this assay are lost.

View Article and Find Full Text PDF

The phosphoinositide-3-kinase (PI3K) family plays a major role in cell signaling and is predominant in leukocytes. Gain-of-function (GOF) mutations in the gene lead to the development of activated PI3Kδ syndrome (APDS), a rare primary immunodeficiency disorder. A subset of APDS patients also displays neurodevelopmental delay symptoms, suggesting a potential role of in cognitive and behavioural function.

View Article and Find Full Text PDF

Fascial therapy is an effective, yet painful, procedure. Information about pain level is essential for the physiotherapist to adjust the therapy course and avoid potential tissue damage. We have developed a method for automatic pain-related reaction assessment in physiotherapy due to the subjectivity of a self-report.

View Article and Find Full Text PDF

Percutaneous ablation methods are used to treat primary and metastatic liver tumors. Image guided navigation support minimally invasive interventions of rigid anatomical structures. When working with the displacement and deformation of soft tissues during surgery, as in the abdomen, imaging navigation systems are in the preliminary implementation stage.

View Article and Find Full Text PDF

Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description.

View Article and Find Full Text PDF

Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II).

View Article and Find Full Text PDF

For half a century it was assumed that granule cells use ultra-sparse encoding, but now in vivo calcium-imaging studies have shown that large ensembles of granule cells provide dense signals, which themselves evolve and adapt during training.

View Article and Find Full Text PDF

Cerebellar granule cells, which constitute half the brain's neurons, supply Purkinje cells with contextual information necessary for motor learning, but how they encode this information is unknown. Here we show, using two-photon microscopy to track neural activity over multiple days of cerebellum-dependent eyeblink conditioning in mice, that granule cell populations acquire a dense representation of the anticipatory eyelid movement. Initially, granule cells responded to neutral visual and somatosensory stimuli as well as periorbital airpuffs used for training.

View Article and Find Full Text PDF

Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice.

View Article and Find Full Text PDF

Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2(R308/Y), Cntnap2-/-, L7-Tsc1 (L7/Pcp2(Cre)::Tsc1(flox/+)), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2-/-, patDp(15q11-13)/+, and L7/Pcp2(Cre)::Tsc1(flox/+), which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC.

View Article and Find Full Text PDF

A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca and in some cases, poor signal-to-noise ratio still limit their usefulness.

View Article and Find Full Text PDF

Cerebellar research has focused principally on adult motor function. However, the cerebellum also maintains abundant connections with nonmotor brain regions throughout postnatal life. Here we review evidence that the cerebellum may guide the maturation of remote nonmotor neural circuitry and influence cognitive development, with a focus on its relationship with autism.

View Article and Find Full Text PDF

Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr-Albus-Ito theory posits that learning involves plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity appear to contribute to motor adaptation.

View Article and Find Full Text PDF