We measured the 229 nm absolute ultraviolet (UV) Raman cross-sections of the explosives trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclotrimethylene-trinitramine (RDX), the chemically related nitroamine explosive HMX, and ammonium nitrate in solution. The 229 nm Raman cross-sections are 1000-fold greater than those excited in the near-infrared and visible spectral regions. Deep UV resonance Raman spectroscopy enables detection of explosives at parts-per-billion (ppb) concentrations and may prove useful for stand-off spectroscopic detection of explosives.
View Article and Find Full Text PDFWe demonstrate a calculated alpha-helix peptide folding energy landscape which accurately simulates the first experimentally measured alpha-helix melting energy landscape. We examine a 21-amino acid, mainly polyalanine peptide and calculate the free energy along the Psi Ramachandran angle secondary folding coordinate. The experimental free energy landscape was determined using UV resonance Raman spectroscopy.
View Article and Find Full Text PDFUV resonance Raman spectroscopy has been used to determine the conformational energy landscape of poly-L-lysine (PLL) in the presence of NaClO4 as a function of temperature. At 1 degree C, in the presence of 0.83 M NaClO4, PLL shows an approximately 86% alpha-helix-like content, which contains alpha-helix and pi-bulge/helix conformations.
View Article and Find Full Text PDFWe used UV resonance Raman (UVRR) to examine the spatial dependence of the T-jump secondary structure relaxation of an isotopically labeled 21-residue mainly Ala peptide, AdP. The AdP penultimate Ala residues were perdeuterated, leaving the central residues hydrogenated, to allow separate monitoring of melting of the middle versus the end peptide bonds. For 5 to 30 degrees C T-jumps, the central peptide bonds show a approximately 2-fold slower relaxation time (189 +/- 31 ns) than do the exterior peptide bonds (97 +/- 15 ns).
View Article and Find Full Text PDFWe used UV resonance Raman (UVRR) spectroscopy exciting at approximately 200 nm within the peptide bond pi --> pi* transitions to selectively study the amide vibrations of peptide bonds during alpha-helix melting. The dependence of the amide frequencies on their Psi Ramachandran angles and hydrogen bonding enables us, for the first time, to experimentally determine the temperature dependence of the peptide bond Psi Ramachandran angle population distribution of a 21-residue mainly alanine peptide. These Psi distributions allow us to easily discriminate between alpha-helix, 3(10)-helix and pi-helix/bulge conformations, obtain their individual melting curves, and estimate the corresponding Zimm and Bragg parameters.
View Article and Find Full Text PDFWe examined the 204-nm UV resonance Raman (UVR) spectra of the polyproline II (PPII) and alpha-helical states of a 21-residue mainly alanine peptide (AP) in different H2O/D2O mixtures. Our hypothesis is that if the amide backbone vibrations are coupled, then partial deuteration of the amide N will perturb the amide frequencies and Raman cross sections since the coupling will be interrupted; the spectra of the partially deuterated derivatives will not simply be the sum of the fully protonated and deuterated peptides. We find that the UVR spectra of the AmIII and AmII' bands of both the PPII conformation and the alpha-helical conformation (and also the PPII AmI, AmI', and AmII bands) can be exactly modeled as the linear sum of the fully N-H protonated and N-D deuterated peptides.
View Article and Find Full Text PDFWe used UV resonance Raman (UVRR) spectroscopy to quantitatively correlate the peptide bond AmIII3 frequency to its Psi Ramachandran angle and to the number and types of amide hydrogen bonds at different temperatures. This information allows us to develop a family of relationships to directly estimate the Psi Ramachandran angle from measured UVRR AmIII3 frequencies for peptide bonds (PBs) with known hydrogen bonding (HB). These relationships ignore the more modest Phi Ramachandran angle dependence and allow determination of the Psi angle with a standard error of +/-8 degrees , if the HB state of a PB is known.
View Article and Find Full Text PDFWe built a transient absorption spectrophotometer that can determine transient absorption spectral changes that occur at times as fast as approximately 200 ns and as slow as a minute. The transient absorption can be induced by a temperature-jump (T-jump) or by optical pumping from the deep ultraviolet (UV) to the infrared (IR) by use of single ns Nd:YAG laser pulses. Our use of a fiber-optic spectrometer coupled to a XeF flashlamp makes the collection of transient spectra easy and convenient in the spectral range from the near IR (1700 nm) down to the deep UV (200 nm), with high signal-to-noise (S/N) ratios.
View Article and Find Full Text PDFTrp-cage, a synthetic 20 residue polypeptide, is proposed to be an ultrafast folding synthetic miniprotein which utilizes tertiary contacts to define its native conformation. We utilized UV resonance Raman spectroscopy (UVRS) with 204 and 229 nm excitation to follow its thermal melting. Our results indicate that Trp-cage melting is complex, and it is not a simple two-state process.
View Article and Find Full Text PDFUV resonance Raman (UVR) spectroscopy was used to examine the solution conformation of poly-l-lysine (PLL) and poly-l-glutamic acid (PGA) in their non-alpha-helical states. UVR measurements indicate that PLL (at pH = 2) and PGA (at pH = 9) exist mainly in a mixture of polyproline II (PPII) and a novel left-handed 2.5(1)-helical conformation, which is an extended beta-strand-like conformation with Psi approximately +170 degrees and Phi approximately -130 degrees .
View Article and Find Full Text PDFUV resonance Raman spectra (UVRS) of an alpha-helical, 21 residue, mainly Ala peptide (AP) in the dehydrated solid state were compared to those in aqueous solution at different temperatures. The UVRS amide band frequencies of a dehydrated solid alpha-helix peptide show frequency shifts compared to those in aqueous solution due to the loss of amide backbone hydrogen bonding to water; the amide II and amide III bands of the solid alpha-helix downshift, while the amide I band upshifts. The shifts are identical in direction but smaller than those that occur for alpha-helices in aqueous solution as the temperature increases; water hydrogen bonding strengths decrease as the temperature increases.
View Article and Find Full Text PDF