Publications by authors named "Aleksandr Perevedentsev"

Article Synopsis
  • The study explores the use of Lewis-paired complexes, specifically B(CF) (BCF) and FTCNQ, as advanced dopants for organic semiconductors to overcome issues like low electrical conductivity and thermal stability.
  • These new dopants significantly improve the performance of poly(3-hexylthiophene) (P3HT), achieving conductivities over 300 S cm in isotropic films, and show a dramatic increase in thermoelectric power factor compared to traditional dopants.
  • Additionally, BCF:FTCNQ-doped P3HT demonstrates enhanced thermal stability and dedoping activation energy, making it at least 10 times more stable than conventional dopants.
View Article and Find Full Text PDF

The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices.

View Article and Find Full Text PDF

We developed a novel contactless frequency-domain thermoreflectance approach to study thermal transport, which is particularly convenient when thermally anisotropic materials are considered. The method is based on a line-shaped heater geometry, produced with a holographic diffractive optical element, instead of using a spot heater as in conventional thermoreflectance. The heater geometry is similar to the one used in the 3-omega method, however, keeping all the technical advantages offered by non-contact methodologies.

View Article and Find Full Text PDF

Here we show that molecular doping of polymer thermoelectrics increases the electrical conductivity while reducing the thermal conductivity. A high-throughput methodology based on annealing and doping gradients within individual films is employed to self-consistently analyze and correlate electrical and thermal characteristics for the equivalent of >100 samples. We focus on the benchmark material system poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-]thiophene) (PBTTT) doped with molecular acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ).

View Article and Find Full Text PDF

Photolithography has been a major enabling tool for miniaturisation of silicon devices that underpinned the electronics revolution. Rapid, high-resolution patterning of key material characteristics would, similarly, accelerate the advent of molecular electronics and photonics. Here we advance a versatile approach employing local diffusion of functional small-molecular compounds through a solution-processed 'molecular gate' interlayer.

View Article and Find Full Text PDF

Two doping mechanisms are known for the well-studied materials poly(3-hexylthiophene) (P3HT) and poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-]thiophene) (PBTTT), namely, integer charge transfer (ICT) and charge transfer complex (CTC) formation. Yet, there is poor understanding of the effect of doping mechanism on thermal stability and the thermoelectric properties. In this work, we present a method to finely adjust the ICT to CTC ratio.

View Article and Find Full Text PDF

Phase-change memory materials refer to a class of materials that can exist in amorphous and crystalline phases with distinctly different electrical or optical properties, as well as exhibit outstanding crystallization kinetics and optimal phase transition temperatures. This paper focuses on the potential of colloids as phase-change memory materials. We report a novel synthesis for amorphous GeTe nanoparticles based on an amide-promoted approach that enables accurate size control of GeTe nanoparticles between 4 and 9 nm, narrow size distributions down to 9-10%, and synthesis upscaling to reach multigram chemical yields per batch.

View Article and Find Full Text PDF

Poly(9,9-dioctylfluorene) (PFO) is a widely studied blue-emitting conjugated polymer, the optoelectronic properties of which are strongly affected by the presence of a well-defined chain-extended "β-phase" conformational isomer. In this study, optical and Raman spectroscopy are used to systematically investigate the properties of PFO thin films featuring a varied fraction of β-phase chain segments. Results show that the photoluminescence quantum efficiency (PLQE) of PFO films is highly sensitive to both the β-phase fraction and the method by which it was induced.

View Article and Find Full Text PDF

Solution-crystallization is studied for two polyfluorene polymers possessing different side-chain structures. Thermal analysis and temperature-dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X-ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar-zigzag chain conformation termed the β-phase, which is observed for certain linear-side-chain polyfluorenes, is necessary for the formation of so-called polymer-solvent compounds for these polymers.

View Article and Find Full Text PDF

Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest.

View Article and Find Full Text PDF

Metamaterials are a promising new class of materials, in which sub-wavelength physical structures, rather than variations in chemical composition, can be used to modify the nature of their interaction with electromagnetic radiation. Here we show that a metamaterials approach, using a discrete physical geometry (conformation) of the segments of a polymer chain as the vector for a substantial refractive index change, can be used to enable visible wavelength, conjugated polymer photonic elements. In particular, we demonstrate that a novel form of dip-pen nanolithography provides an effective means to pattern the so-called β-phase conformation in poly(9,9-dioctylfluorene) thin films.

View Article and Find Full Text PDF