Since 1989, lumpy skin disease of cattle (LSD) has spread out of Africa via the Middle East northwards and eastwards into Russia, the Far East and South-East Asia. It is now threatening to become a worldwide pandemic, with Australia possibly next in its path. One of the research gaps on the disease concerns its main mode of transmission, most likely via flying insect vectors such as biting flies or mosquitoes.
View Article and Find Full Text PDFLumpy skin disease (LSD) is an economically important transboundary disease affecting cattle, causing large economic losses such as decreased production and trade restrictions. LSD has been a historically neglected disease since it previously caused disease limited to the African continent. Currently, the epidemiology of LSD virus is based on how the disease is transmitted in tropical and sub-tropical climates.
View Article and Find Full Text PDFThe use of live homologous vaccines to protect against lumpy skin disease virus (LSDV) infection requires the use of molecular tools to differentiate between infected and vaccinated animals (DIVA). In this study, the commercial real-time PCR assays; ID Gene™ LSD DIVA Triplex kit and Bio-T kit LSD - DIVA, as well as published assays targeting the GPCR gene (Journal of Virological Methods, 249, 48-57) and ORF008 and ORF126 (Sel'skokhozyaistvennaya Biologiya, 54, 347-358) were evaluated. These assays correctly identified classical field isolates (European lineage) and vaccine (Neethling vaccine).
View Article and Find Full Text PDFGenomic changes by recombination have been recently observed in lumpy skin disease viruses circulating in Russia. The first characterized naturally occurring recombinant lumpy skin disease virus Saratov/2017 occurred through recombination between a live attenuated virus vaccine and the Southern African lumpy skin disease virus. Understanding if recombination can increase or decrease virulence of viruses through changes in different gene regions is required to improve the understanding of capripoxvirus biology.
View Article and Find Full Text PDFAn uncharacteristic outbreak of lumpy skin disease was reported in the Republic of Udmurtiya, Russia, during the climatic winter of March 2019. The causative lumpy skin disease virus (LSDV_Udmurtiya_Russia_2019) was shown to be a recombinant composed of a live attenuated Neethling-type vaccine strain as the dominant parental strain and a Kenyan KSGP/NI-2490-like virus as its minor parental strain, with 24 statistically significant recombination events that are not identical to those in LSDV Saratov/2017, in which 27 events were identified.
View Article and Find Full Text PDFVaccination against lumpy skin disease (LSD) is crucial for maintaining the health of animals and the economic sustainability of farming. Either homologous vaccines consisting of live attenuated LSD virus (LSDV) or heterologous vaccines consisting of live attenuated sheeppox or goatpox virus (SPPV/GPPV) can be used for control of LSDV. Although SPPV/GTPV-based vaccines exhibit slightly lower efficacy than live attenuated LSDV vaccines, they do not cause vaccine-induced viremia, fever, and clinical symptoms of the disease following vaccination, caused by the replication capacity of live attenuated LSDVs.
View Article and Find Full Text PDFThe transmission of "lumpy skin disease virus" (LSDV) has prompted intensive research efforts due to the rapid spread and high impact of the disease in recent years, especially in Eastern Europe and Balkan countries. In this study, we experimentally evaluate the vaccine-derived virulent recombinant LSDV strain (Saratov/2017) and provide solid evidence on the capacity of the virus for transmission in a vector-proof environment. In the 60-day long experiment, we used inoculated bulls (IN group) and two groups of in-contact animals (C1 and C2), with the former (C1) being in contact with the inoculated animals at the onset of the trial and the latter (C2) being introduced at day 33 of the experiment.
View Article and Find Full Text PDFThe reaction of triferrocenylthiophosphite with elemental sulfur leads to triferrocenyltetrathiophosphate. The molecule of tetrathiophosphate adopts propeller-like all synclinal-conformation of the ferrocenyl fragments respective to the P=S bond. All ferrocenyl groups have nearly ideal eclipsed conformation of the cyclopentadienyl fragments.
View Article and Find Full Text PDFThe analysis of exhaled breath is drawing a high degree of interest in the diagnostics of various diseases, including lung cancer. Electronic nose (E-nose) technology is one of the perspective approaches in the field due to its relative simplicity and cost efficiency. The use of an E-nose together with pattern recognition algorithms allow 'breath-prints' to be discriminated.
View Article and Find Full Text PDFObjective: The resurgence of lumpy skin disease virus isolates of different genotypic natures abolishes the accuracy of assays that target either vaccine or field strain genome. The aim of the present study was to develop a universal real-time PCR assay using TaqMan chemistry to cover field, vaccine, and recombinant strains of lumpy skin disease virus isolates.
Results: The PCR assay was designed based on a LSDV044 target region that offers a unique identification locus to facilitate the sensitive and specific detection of all isolates known to date.
We report here the complete genome sequence of a lumpy skin disease virus (LSDV) isolate obtained in the Northern Caucasus region of Russia in 2015. The LSDV/Russia/Dagestan/2015 genome sequence grouped with field LSDV isolates found in Serbia and Greece, suggesting the monophyletic origin of LSDV isolates that recently affected countries in the Northern Hemisphere.
View Article and Find Full Text PDFThe synthesis and physical properties of the series of the ferrocenyl-containing sterically hindered phosphonium salts based on di(-butyl)ferrocenylphosphine is reported. Analysis of voltamogramms of the obtained compounds revealed some correlations between their structures and electrochemical properties. The elongation of the alkyl chain at the P atom as well as replacement of the Br anion by [BF₄] shifts the ferrocene/ferrocenium transition of the resulting salts into the positive region.
View Article and Find Full Text PDF