We report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe_{2} nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature T, the increasing critical current I_{c} exhibits a sharp upturn at a temperature T_{*} around 20% of the junction critical temperature for several different samples and various gate voltages. The I_{c} vs T demonstrates a short junction behavior for T>T_{*}, but crosses over to a long junction behavior for T
In this work, we use electrostatic control of quantum Hall ferromagnetic transitions in CdMnTe quantum wells to study electron transport through individual domain walls (DWs) induced at a specific location. These DWs are formed due to the hybridization of two counterpropagating edge states with opposite spin polarization. Conduction through DWs is found to be symmetric under magnetic field direction reversal, consistent with the helical nature of these DWs.
View Article and Find Full Text PDFSearch for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.
View Article and Find Full Text PDF