Publications by authors named "Aleksandr Ivanovich Kostev"

The electrochemical behavior of new electrode materials based on poly-N-phenylanthranilic acid (P-N-PAA) composites with reduced graphene oxide (RGO) was studied for the first time. Two methods of obtaining RGO/P-N-PAA composites were suggested. Hybrid materials were synthesized via in situ oxidative polymerization of N-phenylanthranilic acid (N-PAA) in the presence of graphene oxide (GO) (RGO/P-N-PAA-1), as well as from a P-N-PAA solution in DMF containing GO (RGO/P-N-PAA-2).

View Article and Find Full Text PDF

A one-step preparation method for cobalt- and iron-containing nanomaterials based on poly-N-phenylanthranilic acid (P-N-PAA) and magnetic nanoparticles (MNP) was developed for the first time. To synthesize the MNP/P-N-PAA nanocomposites, the precursor is obtained by dissolving a Co (II) salt in a magnetic fluid based on Fe3O4/P-N-PAA with a core-shell structure. During IR heating of the precursor in an inert atmosphere at T = 700−800 °C, cobalt interacts with Fe3O4 reduction products, which results in the formation of a mixture of spherical Co-Fe, γ-Fe, β-Co and Fe3C nanoparticles of various sizes in the ranges of 20 < d < 50 nm and 120 < d < 400 nm.

View Article and Find Full Text PDF

Hybrid ternary nanomaterials based on conjugated polymer polydiphenylamine-2-carboxylic acid (PDPAC) (poly--phenylanthranilic acid), FeO nanoparticles and single-walled carbon nanotubes (SWCNT) were prepared for the first time. Polymer-metal-carbon FeO/SWCNT/PDPAC nanocomposites were synthesized via in situ oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) by two different ways: in an acidic medium and in the interfacial process in an alkaline medium. In an alkaline medium (pH 11.

View Article and Find Full Text PDF

Hybrid nanocomposites based on electroactive polydiphenylamine-2-carboxylic acid (PDPAC) and single-walled carbon nanotubes (SWCNTs) were obtained for the first time. Polymer-carbon nanomaterials were synthesized via in situ oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of SWCNTs by two different ways. Hybrid SWCNT/PDPAC nanocomposites were prepared both in an acidic medium and in the heterophase system in an alkaline medium.

View Article and Find Full Text PDF