The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies.
View Article and Find Full Text PDFIsocyanates play an essential role in modern manufacturing processes, especially in polyurethane production. There are numerous synthesis strategies for isocyanates both under industrial and laboratory conditions, which do not prevent searching for alternative highly efficient synthetic protocols. Here, we report a detailed theoretical investigation of the mechanism of sulfur dioxide-catalyzed rearrangement of phenylnitrile oxide into phenyl isocyanate, which was first reported in 1977.
View Article and Find Full Text PDFThe accuracy of coupled-cluster methods for the computation of core-valence correction to atomization energy was assessed. Truncation levels up to CCSDTQP were considered together with (aug-)cc-pwCVZ ( = D, T, Q, 5) basis sets and three different extrapolation techniques (canonical and flexible Helgaker formula and Riemann zeta function extrapolation). With the exception of CCSD, a more accurate correction can be obtained from a larger basis set using a lower-level coupled-cluster method, and not .
View Article and Find Full Text PDFThe reaction between ferrocenium and trimethylphosphine was studied using density functional theory (DFT), domain-based local pair natural orbital coupled cluster theory with single-, double-, and perturbative triple excitations (DLPNO-CCSD(T)), and N-electron valence state perturbation theory (NEVPT2). The accuracy of the DFT functionals decreases compared to the DLPNO-CCSD(T) level in the following order: M06-L > TPSS > M06, BLYP > PBE, PBE0, B3LYP > > PWPB95 > > DSD-BLYP. The roles of thermochemical, continuum solvation (SMD), and counterpoise corrections were evaluated.
View Article and Find Full Text PDF